• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Janoca » Dom Jul 13, 2014 03:54

Seja p(x) uma função contínua tal que \int_{2}^{4}p(x)dx=7. Podemos concluir que:
a) p(x)\geq 0, para todo x e [2, 4]
b) p(x)\geq 0, para todo x e ]-\infty, +\infty[
c) p(x) \geq 3,5, para algum x e [2, 4]
d)p(x) \geq 7, para algum x e [2, 4]
e) p(x)= 3,5 para todo x e [2,4].

Creio que essa questão seja relativamente simples, mas confesso que surgiu uma dúvida, primeiro quando olhei essa questão de cara, pensei q a resposta fosse a letra c ou e. Porém, to em duvida de ir logo respondendo de cara. Gostaria de entender o modo como devo resolver essa questão, gostaria de entender o que ha de errado em cada alternativa e o motivo da alternativa correta.

desde já agradeço!
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral

Mensagempor e8group » Dom Jul 13, 2014 13:14

(a) é Falso . Pois , a integral nos fornece área com sinal e podemos ter \int_{2}^{3} p(x)dx < 0 e \int_3^4 p(x)dx > 0 de modo que a soma das integrais vale 7 ,i.e, estamos dizemos que p não necessariamente é \geq 0 em [2,4] . Deixo para vc fornecer um contra exemplo .

(b) é Falso . Segue diretamente de (a) .

(d) é falso , segue diretamente de (a) .Ou alternativamente , se tivéssemos p(x) \geq 7 em [2,4] teríamos pela monotonicidade da integral que 7 = \int_2^7 p(x) dx \geq \int_2^4 7 dx = 14 , absurdo !

(e) é falso .Segue diretamente de (a) .

O único item que sobrou é o (c) que de fato é verdadeiro .Pois , se o item (c) fosse falso teríamos que

(*)  p(x) < 3.5 para todo x em [2,4] o que implicaria pela monotonicidade da integral que 7 =\int_2^4 p(x) dx < \int_2^4 3.5 dx = 7 ,absurdo ! .

Portanto , negar (*) implica em dizer que para algum x em [2,4] tem-se p(x) \geq 3.5 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral

Mensagempor Janoca » Dom Jul 13, 2014 21:14

obrigada pela ajuda! :y:
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}