• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Séries

Séries

Mensagempor manuoliveira » Sex Mai 23, 2014 21:07

Não estou conseguindo resolver o exercício abaixo. Alguém poderia me explicar certinho?

\sum_{n=1}^\infty\frac{1}{n^3}

Agradeço desde já quem puder ajudar!!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Séries

Mensagempor e8group » Sáb Mai 24, 2014 18:09

manuoliveira , vc deseja verificar a convergência , não convergência dá série , só isso ? Quais ferramentas você dispõe para usar ? Podemos usar Teste da condensação de Cauchy ?

Estou dizendo isso pq , o Teste da condensação de Cauchy prova a seguinte proposição :

\sum_{1}  n^{-p}  < \infty sempre que p fixo é maior que 1.

Se você interessar por outras dem. pode acessar (Está em inglês)

http://math.stackexchange.com/questions ... -for#29466

ou fazer uma busca aqui no fórum .


Sem pensar no caso geral , e aceitando que \sum_1 n^{-2} converge então pelo teste da comparação \sum_1 n^{-3} também converge . Pq ?

Dica : n^3 \geq n^2  ;  n=1,2,3,\hdots e o que acontece com a desigualdade baseada no inverso dos números ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Séries

Mensagempor Man Utd » Ter Mai 27, 2014 15:10

Boa tarde :D


Será que existe algum meio de achar a soma da série \zeta(3)=\sum_{n=1}^{+\infty} \; \frac{1}{n^3} ??? usando a série de fourier ou qualquer outra coisa?


Neste link o autor demonstra como achar os valores da função zeta quando \zeta(2n), ou seja multiplos de 2, mas não achei nada quando é ímpar.


Obrigado pela atenção.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.