• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função quadrática - (UC.PR)

Função quadrática - (UC.PR)

Mensagempor SauloRJ » Sex Mai 16, 2014 21:00

Boa noite a todos!

(UC.PR) A função quadrática f(x)= (a+1)x² -ax +3 admite um máximo para x=1, se a for:
a) 1
b) -2
c) -1
d) 0
e) 2

Como ainda estou aprendendo funções, gostaria de saber se este exercício é resolvido do jeito q eu fiz! Caso contrário, alguém poderia resolver passo a passo p/ que eu possa ver como se resolve?

(a+1)x² -ax +3
{X}_{v}= \frac{-b}{2a} \Rightarrow \frac{-(-a)}{2(a+1)}= \frac{a}{2a+2}
a= 2a+2
2a-a=-2
a= -2

Obrigado! :y:
Editado pela última vez por SauloRJ em Sex Mai 16, 2014 23:55, em um total de 1 vez.
Avatar do usuário
SauloRJ
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 06, 2014 11:08
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função quadrática - (UC.PR)

Mensagempor Russman » Sex Mai 16, 2014 22:46

Ta certo. :y:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função quadrática - (UC.PR)

Mensagempor SauloRJ » Sex Mai 16, 2014 23:54

Russman escreveu:Ta certo. :y:




Valeu Russman!
Avatar do usuário
SauloRJ
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 06, 2014 11:08
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}