• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Trigonométrica

Equação Trigonométrica

Mensagempor Lana Brasil » Qui Abr 17, 2014 21:44

Boa Noite.
Sabendo que 2 sen x + 5 cos x = 0 e que pi/2<x<pi, obtenha o valor de sen x e cos x.

Estou com dúvidas na resolução da equação acima. Resolvi cheguei a um número muito estranho para cosx e sen x mas no enunciado o intervalo corresponde a cosx negativo e senx positivo. Encontrei exatamente o contrário. Podem me ajudar, por favor?
Obrigada.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor e8group » Qui Abr 17, 2014 23:32

A ideia é estabelecer uma conexão entre seno e cosseno . Sabemos que isto é possível , uma das relações que nos permite escreve seno em função de cosseno e vice-versa é relação trigonométrica fundamental : sin^2 x + cos^2x = 1 .

Pois bem , vou sugerir uma álgebra que nos leva a resposta

Ps.: O intervalo é (\pi/2,\pi) = I . A função cosseno é sempre negativa neste intervalo ,logo - cos(x) > 0 , \forall x \in I .

Segue ,

2 sin x + 5cos x = 0  \iff  2 sin x =  - 5 cosx  \iff   sinx = -\frac{5}{2} cos(x) . Podemos dividir ambos membros - cos(x) \neq 0 ,

- tan(x) = \frac{5}{2} . Como ambos membros é positivo , elevando ao quadrado

tan^2 x = 25/4 . Porém sabemos q 1 + tan^2 x = sec^2 x = 1/cos^2 x .

Então , sec^2 x = 1/cos^2 x =   tan^2 x  +1 =  25/4 + 1 = 29/4 . Logo cos^2(x) = 4/29 ou seja

|cos(x)| = 2/\sqrt{29} . Como cos(x) < 0 , obtemos cos(x) =- 2/\sqrt{29} .

Agora tente terminar . Importante é compreender a ideia geral ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor Lana Brasil » Sex Abr 18, 2014 14:02

santhiago escreveu:A ideia é estabelecer uma conexão entre seno e cosseno . Sabemos que isto é possível , uma das relações que nos permite escreve seno em função de cosseno e vice-versa é relação trigonométrica fundamental : sin^2 x + cos^2x = 1 .

Pois bem , vou sugerir uma álgebra que nos leva a resposta

Ps.: O intervalo é (\pi/2,\pi) = I . A função cosseno é sempre negativa neste intervalo ,logo - cos(x) > 0 , \forall x \in I .

Segue ,

2 sin x + 5cos x = 0  \iff  2 sin x =  - 5 cosx  \iff   sinx = -\frac{5}{2} cos(x) . Podemos dividir ambos membros - cos(x) \neq 0 ,

- tan(x) = \frac{5}{2} . Como ambos membros é positivo , elevando ao quadrado

tan^2 x = 25/4 . Porém sabemos q 1 + tan^2 x = sec^2 x = 1/cos^2 x .

Então , sec^2 x = 1/cos^2 x =   tan^2 x  +1 =  25/4 + 1 = 29/4 . Logo cos^2(x) = 4/29 ou seja

|cos(x)| = 2/\sqrt{29} . Como cos(x) < 0 , obtemos cos(x) =- 2/\sqrt{29} .

Agora tente terminar . Importante é compreender a ideia geral ...


Obrigada pela ajuda.
Eu já havia feito os cálculos e cheguei nos valores de sen x e cos x. O meu problema é só o intervalo. Como cheguei em um valor positivo para o cos x, apenas coloco o sinal negativo? Queria saber por que?
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor e8group » Sex Abr 18, 2014 14:08

Por favor mostre sua resolução , assim poderei te ajudar. A princípio que posso dizer é q algo errado , cosseno é sempre negativo no intervalo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor Lana Brasil » Sex Abr 18, 2014 14:29

santhiago escreveu:Por favor mostre sua resolução , assim poderei te ajudar. A princípio que posso dizer é q algo errado , cosseno é sempre negativo no intervalo .


Obrigada novamente. Acabei de descobrir meu erro bobo. Simplesmente esqueci de colocar + e - ao tirar raiz do cos x. Ou seja, a positiva não serve.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor e8group » Sex Abr 18, 2014 15:30

Ok. :

Sempre tenha em mente que \sqrt{a^2} não é a e sim |a| . Logo , se a < 0 ,

|a| = - a > 0 , ou seja ,\sqrt{a^2} = -a . Caso , a > 0 ou a = 0 , |a| = a .  Neste caso sim [tex] \sqrt{a^2} = a .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}