por METEOS » Sáb Mar 08, 2014 16:29
Bom dia,
Estou a estudar para testes que vou ter nos próximos dias, e surgiram uns exercícios que me estão causando dores de cabeça..
Digitalizei os exercicios que vão estar disponíveis aqui em baixo:
http://postimg.org/image/uh1cbvtn7/Agradecia que me ajudassem, se não poderem resolver integralmente, pelo menos me ajudem como começar a resolve-los.
Agradecido,
Luís Soares
-
METEOS
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Set 30, 2013 17:04
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Ciencias
- Andamento: cursando
por Russman » Sáb Mar 08, 2014 18:36
Exercício 2:
2.1) Basta notar que os vetores são perpendiculares. Portanto, o produto interno será nulo.
2.2)
AB . AD = |AB | . |AD| . cos(alpha) , alpha é o ângulo evidente na imagem.
Como ADB forma um triângulo retângulo podemos escrever cos(alpha) = |AD| / |AB|. Assim, |AB| = |AD| / cos(alpha). Logo, da relação acima, temos
AB . AD = |AB | . |AD| . cos(alpha) = [ |AD|² / cos(alpha) ] . cos(alpha) = |AD|² [done]
2.3)
AB . DC = |AB| . |DC| . cos(alpha) = |DC| . |AD| = |DC|. (2/3) |AC|
Mas, como |DC| + |AD| = |AC| , então |AC| = |DC| + (2/3) |AC| ===> 3 . |DC| = |AC| .
Daí,
AB . DC = |DC|. (2/3) |AC| = |DC| (2/3) .3. |DC| = 2 |DC|² [done]
2.4)
a) Uma circunferência de raio R e centro em um ponto O(xo,yo) tem como equação a forma (x-xo)² + (y-yo)² = R² . Assim, se A(2,-3) é o centro da circunferência então
(x-2)² + (y+3)² = R²
é a equação da mesma.
Para calcular o raio basta lembrar que o mesmo é a distância entre o centro da circunferência é um ponto qualquer sobre sua curva. Daí,
dAB² = R² = (2-5)² + (-3-1)² = 3² + 4² = 25 ===> R = 5.
e, logo,
(x-2)² + (y+3)² = 25 é a equação.
Expandindo,
x² - 4x + 4 + y²+6y+9 = 25 ===> x² +y² - 4x +6y = 25 - 13 = 12 [done]
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por METEOS » Sáb Mar 08, 2014 21:06
Bom dia,
obrigado pela resposta.
Gostava que me explicasse a última de novo,
Obrigado pela atenção
Luís Soares
-
METEOS
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Set 30, 2013 17:04
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Ciencias
- Andamento: cursando
por Russman » Seg Mar 10, 2014 12:09
O que você não entendeu?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria
por ehrefundini » Ter Abr 22, 2008 16:53
- 3 Respostas
- 7078 Exibições
- Última mensagem por admin

Qui Mai 01, 2008 15:57
Pedidos de Materiais
-
- geometria 2
por ehrefundini » Qua Mai 07, 2008 10:35
- 1 Respostas
- 5871 Exibições
- Última mensagem por admin

Qua Mai 07, 2008 10:59
Pedidos de Materiais
-
- Geometria
por rybb » Ter Ago 25, 2009 07:48
- 1 Respostas
- 2711 Exibições
- Última mensagem por Elcioschin

Seg Out 05, 2009 22:41
Trigonometria
-
- Geometria - help me?
por rybb » Ter Ago 25, 2009 07:55
- 3 Respostas
- 7076 Exibições
- Última mensagem por Molina

Qua Ago 26, 2009 23:18
Geometria
-
- geometria
por cristina » Qui Nov 19, 2009 07:05
- 0 Respostas
- 2341 Exibições
- Última mensagem por cristina

Qui Nov 19, 2009 07:05
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.