por Laio » Ter Fev 25, 2014 22:22
Travei aqui na solução deste logaritmo. Não sei o que posso fazer com essa divisão de logaritmos de mesma base. Ajuuuuuuda!

Como continuo?
-
Laio
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Fev 15, 2014 19:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Eletrônica
- Andamento: formado
por young_jedi » Ter Fev 25, 2014 22:52
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Laio » Qua Fev 26, 2014 09:37
Legal, usando Báskara, as raízes serão -3 e +9, mas apenas -3 satisfaz a condição de existência do logaritmo. Resposta:V={-3} OBRIGADO!
Mas este exercício me fez pensar em outra dúvida que eu tinha:
Quando eu tenho uma equação de segundo grau tal como essa à qual você chegou, x²-6x-27=0, eu poderia muito bem passar toda a expressão para o outro lado da igualdade e inverter o sinal de todo mundo, ficando 0=-x²+6x+27. Já testei o cálculo e comprovei que isso obviamente não altera o resultado. Mas se me pedissem para desenhar um gráfico com a parábola dessa equação, no primeiro caso eu veria que a>0 e faria uma parábola aberta para cima. No segundo caso, uma parábola aberta para baixo, pois a<0. Mas isso não é possível, pois se trata da mesma equação! O que é que está errado no meu raciocínio?
-
Laio
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Fev 15, 2014 19:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Eletrônica
- Andamento: formado
por young_jedi » Qua Fev 26, 2014 16:36
Seu raciocinio esta correto, note que em um primeiro momento a função que você teria é esta

e a outra função seria

são duas funções diferentes, mas que possuem as mesmas raizes, agora quando se fala em equação somente


temos que essas duas equações são a mesma coisa ou seja são a mesma equação
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Laio » Qua Fev 26, 2014 17:13
Tá certo. O sinal só é sagrado se a equação de segundo grau for uma função no plano cartesiano. Agradeço de novo, Skywalker!
-
Laio
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Fev 15, 2014 19:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Eletrônica
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- logaritmos - mudança de base
por Raquel » Seg Mar 29, 2010 20:02
- 2 Respostas
- 7159 Exibições
- Última mensagem por rodrigorfg

Sáb Abr 10, 2010 01:26
Logaritmos
-
- logaritmos com mudançã de base
por cristina » Ter Jun 08, 2010 10:23
- 4 Respostas
- 2205 Exibições
- Última mensagem por cristina

Ter Jun 08, 2010 11:38
Logaritmos
-
- [Logaritmos] Mudança de Base
por b_afa » Seg Nov 18, 2013 19:29
- 1 Respostas
- 1521 Exibições
- Última mensagem por DanielFerreira

Seg Fev 17, 2014 15:22
Logaritmos
-
- Explicação sobre como resolver logaritmos naturais (base e)
por samra » Sáb Mar 24, 2012 12:06
- 3 Respostas
- 4558 Exibições
- Última mensagem por samra

Sáb Mar 24, 2012 23:21
Logaritmos
-
- Função Composta por si mesma
por WMayalah » Sáb Ago 27, 2011 00:30
- 1 Respostas
- 1058 Exibições
- Última mensagem por LuizAquino

Sáb Ago 27, 2011 13:01
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.