• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio e imagens

Domínio e imagens

Mensagempor joao henrique » Sáb Fev 01, 2014 15:12

Estou com dificuldades para resolver alguns exercícios referentes a imagens e domínio das funções

como eu indico o domínio e a imagem de tais funções, tem alguma notação ou eu preciso fazer o gráfico e verificar o eixo x e y

f(x) = x^{2} +3x + 1

f(x) = 1+ x^{2}

f(x) = 2x -1
joao henrique
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jan 23, 2014 15:56
Formação Escolar: GRADUAÇÃO
Área/Curso: segurança da informação
Andamento: cursando

Re: Domínio e imagens

Mensagempor IlgssonBraga » Dom Fev 02, 2014 16:57

Olha cara, para vc obter o domínio de uma função é só basicamente se perguntar: "Qual número eu coloco aí para a função continuar definida?", ou seja, qual o conjunto de números que aquela determinada equação aceita para x.
No caso da primeira
f(x) = x^{2} +3x + 1

Você nota que pode colocar qualquer número em x, pois todo número tem o seu quadrado. E todo número também pode ser multiplicado por 3, somando os resultados temos um número. Então o domínio dessa é o conjuntos dos reais, ou seja, qualquer número que pertence aos reais. Graficamente você pode ver o domínio como sendo os números dos eixo x, onde começa e onde termina. Nesse caso se estende indefinidamente.

f(x) = 1+ x^{2}

Mesma coisa da 1ª. Qualquer número pode ser colocado lá para a função assumir um valor. Logo o domínio é todo o conjunto dos reais.

f(x) = 2x -1

E aqui também mesma coisa, a diferença que agora temos uma função afim. Mas a ideia é a mesma.

Quanto as imagens temos:

f(x) = x^{2} +3x + 1
Vc pode verificar o vértice dessa parábola e dizer que a imagem é tudo aquilo acima ou igual ao vértice. Já que graficamente
a imagem é o eixo y. Abaixo do vértice não temos nada, ela é de concavidade pra cima.

f(x) = 1+ x^{2}

Mesma coisa da anterior, como é uma equação do 2º grau e o gráfico é uma parábola procura-se o vértice e verifica o que
está acima do vértice. Mas se fosse com o índice a negativo, -ax^2+bx+c e a concavidade para baixo é tudo que está abaixo
do vértice a imagem, é só uma analogia.

f(x) = 2x -1

E nessa o gráfico é uma reta e a reta estende indefinidamente para cima e para baixo, mesmo ela sendo obliqua, então a imagem é o conjuntos dos reais.


Espero ter ajudado, se vc souber fazer os gráficos ajuda bastante !
IlgssonBraga
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jul 18, 2013 10:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: