• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites

limites

Mensagempor rita_ribeir0 » Dom Fev 02, 2014 13:27

\lim_{x\rightarrow0+} ({e}^{\frac{1}{x}} log x) como calcular este limite?
rita_ribeir0
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 02, 2014 13:08
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: ciências
Andamento: cursando

Re: limites

Mensagempor e8group » Dom Fev 02, 2014 18:02

Usando propriedades operatórias de limites você conclui que o limite é - \infty . Para ser mais preciso , basta mostra que para quaisquer seja um número real negativo dado é possível encontrar um número \delta > 0 correspondente ,tal que se x < \delta então exp(1/x) log(x) é estritamente menor que o número dado .Em símbolos ,

\lim_{x\to 0^+} exp(1/x) log(x) = -\infty  \iff para todo M < 0 dado, existe \delta=\delta(N) > 0 tal que se x < \delta então e^{1/x} log(x) < N.

Veja alguns exemplos ... Antes porém , observe que se x \in (0,1) então log(x) < 0 e e^{1/x} > 1 .Logo, multiplicando-se a segunda desigualdade por log(x) obtemos que e^{1/x}log(x) < log(x) .

Agora considere M = - 2 . Devemos encontrar um \delta correspondente de M (notação \delta(M) ) tal que se a desigualdade x < \delta(M) é verdadeira então obrigatoriamente exp(1/x)log(x) < -2 . Aplicando o log em x < \delta(M) temos log(x) < log(\delta(M)) ,logo por transitividade epx(x)log(x) <log(\delta(M)) . Daí pondo log(\delta(M)) = M , resulta , \delta(M) = e^{M} . Assim podemos concluir que dadoM = -2 , tomando-se \delta = e^{-2} teremos que se x < e^{-2} então epx(x)log(x) < log(x) < log(e^{-2}) = - 2 .

Observe que poderíamos também tomar 0< \delta < 1/e^2 .

E analogamente se M = -2 , -9,-55555,-111111111111111 ou M= - \pi ^{55555555} ... enfim qualquer que seja M < 0 basta por \delta = e^M ou 0 <\delta < 1/e^{-M} ) .Desta forma se x < \delta então epx(1/x)log(x) < M .

OBS.: Se a notação log(x) [/tex] designa o logaritmo de base 10, basta trocar "e" por "10" ... desta forma ficaria \delta = 10^M .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59