![\int_{}^{}\frac{dx}{\sqrt[]{{x}^{2}+{a}^{2}}} = ln(x + \sqrt[]{{x}^{2} + {a}^{2}}) + C \int_{}^{}\frac{dx}{\sqrt[]{{x}^{2}+{a}^{2}}} = ln(x + \sqrt[]{{x}^{2} + {a}^{2}}) + C](/latexrender/pictures/60f6baa45c752fc0e845aad793a1928b.png)
![\int_{}^{}\frac{dx}{\sqrt[]{{x}^{2}+{a}^{2}}} = ln(x + \sqrt[]{{x}^{2} + {a}^{2}}) + C \int_{}^{}\frac{dx}{\sqrt[]{{x}^{2}+{a}^{2}}} = ln(x + \sqrt[]{{x}^{2} + {a}^{2}}) + C](/latexrender/pictures/60f6baa45c752fc0e845aad793a1928b.png)

vemos que é possível realizar uma substituição trigonométrica
(desde que
) de modo obtermos outra integral mais simples . Se considerarmos
, podemos sempre escrever
sob a forma
para algum
em
. Segue-se que
(pois
)
,
. Após esta substituição ,veja como a integral ficou mais simples de ser calculada : 

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)