Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por Pessoa Estranha » Dom Nov 17, 2013 21:59
Mostre que:
![\int_{}^{}\frac{dx}{\sqrt[]{{x}^{2}+{a}^{2}}} = ln(x + \sqrt[]{{x}^{2} + {a}^{2}}) + C \int_{}^{}\frac{dx}{\sqrt[]{{x}^{2}+{a}^{2}}} = ln(x + \sqrt[]{{x}^{2} + {a}^{2}}) + C](/latexrender/pictures/60f6baa45c752fc0e845aad793a1928b.png)
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Dom Nov 17, 2013 23:06
Dica :
Observando identidade

vemos que é possível realizar uma substituição trigonométrica

(desde que

) de modo obtermos outra integral mais simples . Se considerarmos

, podemos sempre escrever

sob a forma

para algum

em

. Segue-se que

(pois

)
e derivando-se a expressão

,

. Após esta substituição ,veja como a integral ficou mais simples de ser calculada :

Agora tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Desafios Enviados
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [desafio] cálculo quem sabe?
por Rafael d » Seg Nov 18, 2013 19:15
- 0 Respostas
- 1319 Exibições
- Última mensagem por Rafael d

Seg Nov 18, 2013 19:15
Cálculo: Limites, Derivadas e Integrais
-
- Desafio! Questões de cálculo, Teor. da Divergência de Gauss
por petdias » Sáb Ago 03, 2013 18:06
- 0 Respostas
- 890 Exibições
- Última mensagem por petdias

Sáb Ago 03, 2013 18:06
Cálculo: Limites, Derivadas e Integrais
-
- Desafio
por Guarinense » Sex Nov 10, 2017 22:25
- 0 Respostas
- 5451 Exibições
- Última mensagem por Guarinense

Sex Nov 10, 2017 22:25
Teoria dos Números
-
- Desafio dos Dez Pontos
por Molina » Sáb Jul 12, 2008 00:02
- 6 Respostas
- 5063 Exibições
- Última mensagem por admin

Dom Jul 13, 2008 17:00
Desafios Fáceis
-
- Desafio de lógica
por Twister » Qua Ago 13, 2008 21:46
- 10 Respostas
- 9603 Exibições
- Última mensagem por andymath

Qua Mar 31, 2010 19:14
Desafios Enviados
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.