por jeff_95 » Sáb Nov 16, 2013 19:22
Exercício do Stewart
Seja a, b, c, e d constantes tais que

encontre o valor da soma a+b+c+d
resposta = 24
-
jeff_95
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 16, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecânica
- Andamento: cursando
por e8group » Sáb Nov 16, 2013 21:19
Uma possível solução (não necessariamente está correta ).
Se

, o limite dado se resume a

. Agora suponha

.Neste caso ,
Podemos reescrever o limite a ser calculado sob a forma

.
Pelo que

existe e é finito e

, concluímos que o limite
não é finito, contradição ! Portanto ,

e

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por jeff_95 » Dom Nov 17, 2013 00:56
Valeu cara
Esse stewart tem uns exercicios de foder
-
jeff_95
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 16, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecânica
- Andamento: cursando
por e8group » Dom Nov 17, 2013 12:05
De nada . Mas a resolução está incompleta, apesar do limite da expressão do numerador de

existir e ser finito , a saber o limite desta expressão quando

tende a zero é o número real

que pode ser nulo mesmo considerando

, e caso

não podemos dizer nada sobre o limite

tendo em conta que o mesmo apresentar forma indeterminada "0/0" , portanto devemos também supor

bem como

e chegar em absurdo ,conforme já vimos.
OBS_1 .:
Não tenho 100% certeza se podemos afirmar que

se ocorrem as duas situações :

existe e é um número finito não nulo , digamos

, e

. Vou pensar sobre isto .
OBS_2 :
O limite a ser calculado apresenta forma indeterminada "0/0" , talvez seria adequado utilizar a regra de L'hospital .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por jeff_95 » Dom Nov 17, 2013 18:52
Pois é, se admitirmos que

não é nulo e aplicarmos a regra de L´Hospital 2x sobra

como constante no numerador e

no denominador, e para o limite resultar em

, a unica hipótese que se encaixa no problema é a de que

e

são nulos. Se as variáveis nos senos estivessem elevadas ao quadrado, daí sim poderíamos considerar

e

não nulos.
-
jeff_95
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 16, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecânica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas] Derivadas com definição de limites
por concurseironf » Sex Set 05, 2014 18:11
- 1 Respostas
- 1882 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 22:18
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas, Limites
por Grasi » Qui Jun 25, 2009 00:12
- 1 Respostas
- 3203 Exibições
- Última mensagem por Molina

Qui Jun 25, 2009 11:05
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas, Limites
por Grasi » Qui Jun 25, 2009 00:15
- 1 Respostas
- 2478 Exibições
- Última mensagem por Molina

Qui Jun 25, 2009 11:30
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas, Limites
por Grasi » Qui Jun 25, 2009 00:16
- 1 Respostas
- 2015 Exibições
- Última mensagem por Neperiano

Sáb Set 17, 2011 15:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas, Limites
por Grasi » Qui Jun 25, 2009 00:18
- 0 Respostas
- 1393 Exibições
- Última mensagem por Grasi

Qui Jun 25, 2009 00:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.