por raimundoocjr » Qua Nov 06, 2013 21:16
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 14 - Pág.: 836)
Seja W(s, t)=F(u(s, t), v(s, t)), onde F, u e v são diferenciáveis e

Encontre

e

.
Comentário: Por ser um exercício par não tem a resposta ao final do livro, então gostaria de confirmar com outros membros do fórum. As respostas que encontrei foram:

e

.
Relembrando a teoria:
1) Notação para Derivadas Parciais:

2) Regrada da Cadeia ("Teorema das Funções Implícitas") - duas variáveis:

Obrigado!
-
raimundoocjr
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada Parcial de 1ª Ordem] - Derivada parcial num ponto
por Vitor2+ » Dom Jul 01, 2012 16:27
- 6 Respostas
- 4540 Exibições
- Última mensagem por e8group

Seg Jul 02, 2012 10:56
Cálculo: Limites, Derivadas e Integrais
-
- derivada parcial
por jmario » Dom Abr 18, 2010 11:41
- 0 Respostas
- 1731 Exibições
- Última mensagem por jmario

Dom Abr 18, 2010 11:41
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Parcial
por Silva339 » Seg Mar 25, 2013 19:06
- 1 Respostas
- 1842 Exibições
- Última mensagem por DanielFerreira

Sex Mar 29, 2013 02:28
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial]
por Russman » Qui Mar 28, 2013 22:04
- 1 Respostas
- 1499 Exibições
- Última mensagem por Russman

Sex Mar 29, 2013 13:00
Cálculo: Limites, Derivadas e Integrais
-
- Derivada parcial
por guilherme5088 » Seg Mar 23, 2020 17:55
- 1 Respostas
- 4201 Exibições
- Última mensagem por guilherme5088

Seg Mar 23, 2020 17:56
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.