por menezesandrew » Sex Mar 20, 2009 21:23
Já tentei fazer essa quest]ao mas não consigo de jeito algum!
Gostaria que me ajudassem...
De quantos modos é possivel colocar 8 pessoas em fila de modo que duas dessas pessoas, Vera e Paulo, não fiquem juntas e duas outras, Helena e Pedro permaneçam juntas?
-
menezesandrew
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Mar 20, 2009 21:12
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino medio
- Andamento: cursando
por paulo testoni » Sáb Nov 02, 2013 13:01
Hola.
Helena e Pedro juntos) = 7!*2
(Helena e Pedro juntos) e (Vera e Paulo Juntos) = 6!*2*2
Então:
(Helena e Pedro juntos) - ((Helena e Pedro juntos) e (Vera e Paulo Juntos)) =
(7!*2) - (6!*2*2) = 6!*(7*2 - 2*2) = 6!*(14 - 4) = 10*6! = 7200
-
paulo testoni
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Ter Set 30, 2008 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [combinatória] Ajuda.
por guibushido » Qua Jun 18, 2008 20:06
- 5 Respostas
- 7536 Exibições
- Última mensagem por paulo testoni

Sex Out 03, 2008 15:05
Tópicos sem Interação (leia as regras)
-
- Ajuda combinatoria
por Steven_Draftsman002 » Dom Set 26, 2010 20:11
- 1 Respostas
- 2324 Exibições
- Última mensagem por davi_11

Dom Set 26, 2010 20:29
Estatística
-
- [Ajuda] Baralho - Combinatória
por sauloandrade » Dom Jan 27, 2013 23:34
- 2 Respostas
- 3002 Exibições
- Última mensagem por sauloandrade

Seg Jan 28, 2013 18:38
Análise Combinatória
-
- [analise combinatoria] ajuda
por santtus » Sáb Fev 16, 2013 17:41
- 5 Respostas
- 10512 Exibições
- Última mensagem por DanielFerreira

Sex Fev 22, 2013 00:05
Análise Combinatória
-
- ANALISE COMBINATÓRIA - AJUDA URGENTE!
por adriano_casp » Sex Abr 09, 2010 16:39
- 2 Respostas
- 2209 Exibições
- Última mensagem por estudandoMat

Sex Abr 09, 2010 20:07
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.