• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema

Problema

Mensagempor Liliana » Dom Out 06, 2013 19:10

[Problema de determinação e resolução de equações]


A fórmula C=5/9 (F-32) permite converter graus Fahrenheit em graus Celsius

a) Determine em graus Celsius: 32º F e -4ºF.
b)Resolva a equação dada em ordem a F.
c) Determine em graus Fahrenheit 100º C e 30º C.
Liliana
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 06, 2013 18:53
Formação Escolar: SUPLETIVO
Área/Curso: Métodos Quantitativos
Andamento: cursando

Re: Problema

Mensagempor Pessoa Estranha » Dom Out 06, 2013 22:41

Olá....

Seja C = \frac{5(F-32)}{9} a fórmula de conversão de Celsius para Fahrenheit.

O primeiro item pede para fazermos duas transformações, ou seja, pede para exibir o valor da temperatura, que está em Fahrenheit, em Celsius. Daí, basta substituirmos na fórmula dada. Observe que trata-se de uma relação tal que substituindo F por valores, obteremos o resultado em Celsius, ou seja, obteremos C. É isto o que queremos. Então:

32°F \rightarrow C = \frac{5(32-32)}{9}=0;

-4°F \rightarrow C = \frac{5(-4-32)}{9}=\frac{5(-36)}{9}=\frac{5(-1)(4)(9)}{9}=-20;

Bem, o segundo item não ficou muito claro o que está sendo pedido, mas acho que devemos reescrever a equação dada de tal forma que F seja escrita em função de C, ou seja, ao invés de escrever C em função de F, como inicialmente, escreveremos F em função de C. Assim:

C = \frac{5(F-32)}{9} \rightarrow

9.C = 5.F - 160 \rightarrow

9.C + 160 = 5.F \rightarrow

F = \frac{9.C + 160}{5}

Logo, o que parece que o exercício está pedindo é: F = \frac{9.C + 160}{5}.

Agora, vejamos o último item. Observe que este pede para fazermos a transformação de uma temperatura em Celsius para Fahrenheit. Assim, note que basta aplicarmos a equação encontrada no item anterior. Daí:

F = \frac{9.100+160}{5} = \frac{10(90+16)}{5} = 2.106 = 212;

F = \frac{9.30+160}{5} = \frac{10(27+16)}{5} = 2.43 = 86;

Espero ter ajudado.... :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Problema

Mensagempor Liliana » Sex Out 18, 2013 22:04

Muito obrigada pela sua ajuda. :y:
Liliana
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 06, 2013 18:53
Formação Escolar: SUPLETIVO
Área/Curso: Métodos Quantitativos
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59