por Bravim » Qui Out 03, 2013 18:11
Bem a sua resposta está quase certa, mas



que é a resposta do problema.
Para se usar o Teorema de Bayes (Prob Total),

Dessa igualdade veremos que os eventos serão dependentes aleatoriamente

. Desta igualdade fica provado que

, o que prova que são dependentes .
Obs.: Bem como o número de bolinhas acaba se alterando é intuitivo que os eventos são dependentes.
-

Bravim
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Qui Out 03, 2013 03:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida de probabilidade
por juniorufv » Sex Fev 12, 2010 12:05
- 2 Respostas
- 4547 Exibições
- Última mensagem por juniorufv

Sáb Fev 13, 2010 16:45
Estatística
-
- Dúvida Probabilidade
por RJ1572 » Qui Mar 04, 2010 15:59
- 1 Respostas
- 1671 Exibições
- Última mensagem por Lucio Carvalho

Qui Mar 04, 2010 17:47
Estatística
-
- Dúvida probabilidade
por RJ1572 » Seg Mai 03, 2010 15:24
- 2 Respostas
- 5426 Exibições
- Última mensagem por marcelorenato

Qui Ago 12, 2010 19:05
Estatística
-
- duvida de probabilidade
por natanskt » Ter Dez 14, 2010 21:05
- 3 Respostas
- 5295 Exibições
- Última mensagem por 0 kelvin

Qua Dez 15, 2010 22:04
Estatística
-
- Dúvida de Probabilidade
por guipomper » Dom Mar 06, 2011 18:41
- 0 Respostas
- 1116 Exibições
- Última mensagem por guipomper

Dom Mar 06, 2011 18:41
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.