• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função Calcular f(2) e f(3)]

[Função Calcular f(2) e f(3)]

Mensagempor ricardo de azevedo » Sex Ago 30, 2013 08:37

Bom dia,

Gostaria de tirar uma dúvida como calcular f(2) e f(3).

Seja a função f(a + b) = f(a) . f(b), se f(1) = 9, calcule f(2) e f(3)=?

Muito obrigado pela atenção
ricardo de azevedo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 23, 2013 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: [Função Calcular f(2) e f(3)]

Mensagempor e8group » Sex Ago 30, 2013 13:00

Este exercício só pede para determinar a imagem de 2 e 3 por f ? Caso seja apenas isto ,vale apena observar que todo número n natural é reescrito como combinação linear do número 1 , pois , n = 1 + ...+ 1 ( n-vezes) . Assim se n pertence ao domínio da função f , segue-se que f(n) = f(1 + (n-1)) = f(1) f(n-1)= f(1)f(1+(n-2)) = [f(1)]^2 f(n-2)= ... = [f(1)]^n= 9^n (aqui utilizamos a definição f(a+b)=f(a)f(b) (**) ) .

Apesar de sabermos determinar a imagem de qualquer número natural por f ,não conseguiríamos determinar f(x) facilmente quando x não for um número natural .Uma forma alternativa é notar que a função exponencial tem a propriedade (**).
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Função Calcular f(2) e f(3)]

Mensagempor Russman » Sex Ago 30, 2013 14:38

De forma simples podemos tomar a=b=1. Assim, de acordo com a propriedade

f(1+1) = f(1).f(1) ==> f(2) = 9.9 = 81

Agora, tomando a=2 e b=1, temos

f(2+1) = f(2).f(1) = 81.9 = 729 .

Note que se você supor f(x) = c. e^(kx), onde f: R->R , c e k constantes reais quaisquer, então

f(a+b) = c.e^(k(a+b)) = c.e^(ka+kb) = c.e^(ka).e^(kb)
f(a).f(b) = c.e^(ka).c.e^(kb) = c^2 .e^(ka).e^(kb)

A igualdade f(a+b) = f(a).f(b) se verifica para c^2 = c. Isto é, c=1 pois a solução c=0 é a trivial. O valor k se relaciona com f(1), pois f(1) = e^k. Logo, f(x) = f(1)^x. Como esperávamos.

Logo, como de esperado, verificamos que a função exponencial tem essa propriedade de levar uma soma a um produto.

Mas, se estivéssemos interessados em deduzir a solução exponencial ao invés de sugeri-la, poderíamos tomar a+b = t, onde t é um valor variável. Assim, b = t-a e daí

f(a+b) = f(a).f(b)
f(t) = f(a).f(t-a)

Fazendo a=1, pois conhecemos f(1), podemos escrever, chamando f(1) = f1, ganhando generalidade

f(t) = f1.f(t-1)

ou , ainda,

f(t) - f1 f(t-1) = 0

Note q esta equação é uma equação de recorrência que relaciona as imagens de t com as suas anteriores ( para t inteiro que isso faz sentido).
Sugerindo a solução f(t) = c m^t, onde c em são reais, chegamos em

c.m^t - f1 c m^t/m = 0

donde

c.m^t ( 1 - f1 c/m) =0

e, portanto, já que c é diferente de 0,

1= f1 c/m ==> c=m/f1

Assim, f(t) = m/f1 . m^t ==> f(t) = (1/f1) m ^(t+1)

De fato, a solução que chegamos é uma exponencial. Reaplicando a propriedade inicial

f(a+b) - f(a).f(b)=0
(1/f1) m^(a+b+1) - (1/f1) m ^(a+1).(1/f1) m ^(b+1)=0
(1/f1)m^a . m^b( m - m^2/f1) = 0

donde m = f1 é a solução não trivial. Logo, a função se resume para f(t) = f1^t como obtivemos anteriormente.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Função Calcular f(2) e f(3)]

Mensagempor e8group » Sex Ago 30, 2013 19:46

Boa tarde.Há Outra forma também que pensei

Seja f uma função que satisfaz (1) [; f(a)f(b)= f(a+b) ;] para todo [; a,b;] em seu domínio .Além desta propriedade , suponhamos que f seja uma função diferenciável em todos pontos de seu domínio . Temos então que ,


[; f'(x) = \lim_{h\to 0 } {f(x+h) - f(x)}{h}} [/tex] que devido a (1) e por propriedades operatórias de limites segue-se que [; f'(x) = f(x) \lim_{h\to 0 } {f(h) - 1}{h} ;] . Desde que f é diferenciável, obrigatoriamente o limite acima existe .Definindo o número real [; k = \lim_{h\to 0 } {f(h) - 1}{h} ;] , obtemos

[; f'(x) = k f(x) ;] (2) .

Agora vamos mostrar que a função f satisfaz a propriedade (1) então f(x) > 0 para todo x .Se tivéssemos f(p) = 0 para algum número p de seu domínio isto implicaria f(x) = 0 para todo x ,pois , [;f(x) = f((x-p)+p) f(x-p)f(p) ;] .Assim se f não é uma função identicamente nula ,tem-se sempre [; f(x) \neq 0 ;] para todo x . Assim sendo (1) verdadeiro , [; f(x) = f(x/2 + x/2) = [f(x/2)]^2 > 0 ;].

Utilizando este resultado podemos reescrever f(x) como [; e^{ln(f(x))} ;] .Assim , sendo p(x)= ln(f(x)) ,temos que [; p'(x) = \frac{f'(x)}{f(x)} ;] que devido a (2) [; p'(x) = k = (kx +c )' ;] ,donde segue

[; p(x)= ln(f(x)) =kx +c ;] (3) (onde c é uma constante a ser determinada em breve ) e portanto

[; f(x) = e^{kx} e^{c} ;] (4) (pois , por (3) f(x)= exp(ln(f(x)) = exp(kx+c) = exp(kx) exp(c) ) .

Agora caso conhecemos a imagem do número m por f ,designando q = f(m) , temos :

q = e^{km+c} . Daí , [; \frac{ln(q) - c}{m} = k ;] . Para determinarmos o número c vamos utilizar (1) ,

[; f(a+b) = e^{k(a+b)+c} = e^{ka+kb+c} = e^{ka}e^{kb}e^{c} = e^{ka+c} e^{kb+c}= (e^{ka}e^{kb}e^{c})e^{c}= f(a+b)e^{c} ; ] assim é fácil ver que c = 0 e finalmente obtemos

[; f(x) = e^{ln(q)/m x} = e^{ln(q^x)}^{1/m} = q^{x/m};] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D