• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor dehcalegari » Seg Ago 26, 2013 18:42

\int_{}^{}ln(3x-2)dx

tentei usar u = ln(3x-2) e dv=dx, logo, du= dx/3x-2 e v=x...

Mas não cheguei a nada... ou melhor, até cheguei, mas um pouco ficou confuso... a derivada de ln(3x-2) está certa?
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor dehcalegari » Seg Ago 26, 2013 18:44

ok, ja verifiquei que o du = 3/3x-2 dx

e agora?
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor Russman » Seg Ago 26, 2013 18:48

\int \ln (x) dx = x( \ln(x) - 1)

Assim, se você tomar u(x) = 3x-2 , então du(x) =3 dx e portanto

\int \ln (3x-2) dx = \int \ln (u) \frac{du}{3} = \frac{1}{3} u (\ln (u)  - 1) = \frac{3x-2}{3}( \ln (3x-2) - 1)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral]

Mensagempor dehcalegari » Seg Ago 26, 2013 18:54

a resposta tem que dar

x ln(3x-2) - x - 2/3 ln(3x-2) + C
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor dehcalegari » Seg Ago 26, 2013 18:57

Não teria que fazer u(x) = ln(3x-2), com du = 3/3x-2 dx e ... dv=dx, com v=x ???

Porque ai eu cheguei a:

xln(3x-2) -3\int_{}^{}\frac{x}{3x-2}dx

Só que parei por aqui dai...
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor Russman » Seg Ago 26, 2013 19:26

dehcalegari escreveu:a resposta tem que dar

x ln(3x-2) - x - 2/3 ln(3x-2) + C


Mas a resposta dá isso. É só simplificar.

\frac{3x-2}{3} ( \ln (3x-2) - 1) + c  = (x - \frac{2}{3}) ( \ln (3x-2) - 1) +c =
= x \ln (3x-2)  - x - \frac{2}{3}  \ln (3x-2) + \frac{2}{3} + c = x \ln (3x-2)  - x - \frac{2}{3} \ln (3x-2) +  C


dehcalegari escreveu:Não teria que fazer u(x) = ln(3x-2), com du = 3/3x-2 dx e ... dv=dx, com v=x ???

Porque ai eu cheguei a:



Você não precisa usar esse tratamento pois não há um produto de funções no integrando. Note que fazê-lo seria redundante, já que para resolver a integral que você chegou seria necessário utilizar integração por substituição que é o método que eu te mostrei.

Entende?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral]

Mensagempor dehcalegari » Seg Ago 26, 2013 21:32

Entendi. E o 2/3 ele considerou como C. Fechou. Valeu.
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor Russman » Seg Ago 26, 2013 21:43

O 2/3 é consumido pela constante, já que ela é arbitrária.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral]

Mensagempor dehcalegari » Ter Ago 27, 2013 10:12

:-D
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: