• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações trigonométricas

Relações trigonométricas

Mensagempor Sandra Regina » Qua Nov 18, 2009 12:09


comecei com esse caminho, mas .... não consegui sair disso:
\sqrt[2]{2\frac{cos\theta}{sen\theta}+\left(\frac{1}{sen\theta} \right){}^{2}}
Sandra Regina
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 18, 2009 11:23
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Relações trigonométricas

Mensagempor thadeu » Qua Nov 18, 2009 14:16

Primeiro você tem que encontrar sen \theta.

Usando a propriedade fundamental:
sen^2 \theta+cos^2 \theta=1\,\Rightarrow\,sen^2 \theta+(- \frac{3}{\sqrt{10}})^2=1 \Rightarrow\,sen^2 \theta+\frac{9}{10}=1\\ \Rightarrow\,sen^2 \theta=1-\frac{9}{10}\,\Rightarrow\, sen^2 \theta=\frac{1}{10}\,\Rightarrow\,sen \theta=\frac{1}{\sqrt{10}}

Agora vamos para a expressão:
\sqrt{2cotg \theta+cossec^2 \theta}=\sqrt{2 \frac{cos \theta}{sen \theta}+\frac{1}{sen^2 \theta}}=\sqrt{2\,\frac{- \frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}}+\frac{1}{\frac{1}{10}}}=\sqrt{-6+10}=\sqrt{4}=2
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Relações trigonométricas

Mensagempor Sandra Regina » Qua Nov 18, 2009 15:01

thadeu escreveu:Primeiro você tem que encontrar sen \theta.

Usando a propriedade fundamental:
sen^2 \theta+cos^2 \theta=1\,\Rightarrow\,sen^2 \theta+(- \frac{3}{\sqrt{10}})^2=1 \Rightarrow\,sen^2 \theta+\frac{9}{10}=1\\ \Rightarrow\,sen^2 \theta=1-\frac{9}{10}\,\Rightarrow\, sen^2 \theta=\frac{1}{10}\,\Rightarrow\,sen \theta=\frac{1}{\sqrt{10}}

Agora vamos para a expressão:
\sqrt{2cotg \theta+cossec^2 \theta}=\sqrt{2 \frac{cos \theta}{sen \theta}+\frac{1}{sen^2 \theta}}=\sqrt{2\,\frac{- \frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}}+\frac{1}{\frac{1}{10}}}=\sqrt{-6+10}=\sqrt{4}=2

Que mancada, nem pensei nessa substituição, Obrigada
Sandra Regina
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 18, 2009 11:23
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)