• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de uma função modular

Derivada de uma função modular

Mensagempor Man Utd » Dom Jul 14, 2013 23:45

Olá. :-D

Pergunta: Existe uma regra prática para calcular a derivada de uma função módulo? Ex:|x²-9|, só conheço um método assim: transformando a função anterior em uma equivalente fica : y=sqrt(x²-9)^2 e assim deriva normalmente.

Grato a todos que ajudarem. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada de uma função modular

Mensagempor young_jedi » Seg Jul 15, 2013 00:02

Desconheço um método direto para fazer isto, talvez outro membro do fórum saiba algum, uma forma de fazer seria avaliar a função onde ela é positiva e negativa
no caso desta função ela é negativa para

-3<x<3

portanto pra este intervalo por causa do modulo ela seria o mesmo que

9-x^2

então a derivada nesse intervalo seria -2x

e para os pontos fora desse intervalo seria 2x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada de uma função modular

Mensagempor Man Utd » Seg Jul 15, 2013 00:12

olá o wolfram dá outra resposta http://www.wolframalpha.com/input/?i=de ... C2%B2-9%29 ,será que a derivada da função que o wolfram mostra é para os dois casos isto é quando a função é negativa e quando é positiva?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada de uma função modular

Mensagempor temujin » Seg Jul 15, 2013 14:05

Eu achei meio estranha esta resposta do Wolfram. Me parece que o que ele faz é primeiro aplicar o módulo e depois derivar (veja que o numerador e denominador se cancelam, qdo vc tira da raiz), o que daria a derivada para o caso em que é positiva. Mas se vc olhar o próprio gráfico que ele plota na resposta, ele mostra os dois casos: -2x se -3<x<3, 2x caso contrário.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Derivada de uma função modular

Mensagempor young_jedi » Seg Jul 15, 2013 19:43

a resposta do wolfram vale para os dois casos, quando ele eleva ao quadrado e tira a raiz ele esta tomando o modulo

repare que para x>3 e x<-3

o resultado de x^2-9 sera um numero positivo, sendo dividido pelo seu modulo teremos como resultado 1, multiplicado por 2x é igual a 2x

agora caso tenhamos -3<x<3 então x^2-9 sera um numero negativo, dividido por seu modulo termos como resultado -1, que multiplicado por 2x é igual a -2x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada de uma função modular

Mensagempor Man Utd » Seg Jul 15, 2013 23:55

muito obrigado young_jedi :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}