• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressões aritméticas - Qual o valor de K

Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 05:26

Em uma P.A ({a}_{1}, {a}_{2}, {a}_{3}, ..., {a}_{k},..., {a}_{50}, )
Onde {a}_{2} = 14 e {a}_{5} - {a}_{3} = 18, {a}_{k} = 239, então k é igual a quanto ?

Na formula para do {a}_{k} temo isso não é:

{a}_{k} =\frac{ {a}_{k-1} + {a}_{k+1}}{2}

mas como encontrar o k ?
Essa eu não compreendi :$

só sei isso com esse k :(

{a}_{239} =\frac{ {a}_{239-1} + {a}_{239+1}}{2}

239  =\frac{  239-1 + 239+1 }{2}

239*2  =  239-1 + 239+1


No caso o {a}_{n} é o último número, o n é a quantidade de termos da P.A, o {a}_{k} seria a media aritmética entre o antecedente e o consequente...
e o k seria o que ?

Estou totalmente fora do rumo nos pensamentos... alguém pode me dar uma ajuda do caminho? Agradeço desde já por a atenção de quem se der o trabalho de ajudar, muito obrigado mesmo ...
Editado pela última vez por netolucen4 em Sex Jun 21, 2013 23:29, em um total de 2 vezes.
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor young_jedi » Sex Jun 21, 2013 21:10

os temors de uma PA são dados por

a_n=a_1+(n-1).r

onde r é razão da PA, isso você com certeza sabe

aplique isso para os termos a3 e a5 e calcule e a diferença entre eles como foi dado no enunciado, com isso você encontrara r e depois achar ak é tranquilo, se tiver duidas comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 22:28

{a}_{2} = {a}_{1} + (2-1)r
14 = {a}_{1} + (2-1)r
{a}_{1} + (2-1)r = 14
{a}_{1} + r = 14
{a}_{1} = 14 - r

creio que o r seria esse:
{a}_{5} = 14 + 3r
{a}_{3} = 14 + r
{a}_{5} - {a}_{3} =  14 + 3r -14 - r = 18
14 + 3r -14 - r = 18
3r- r = 18
2r = 18
r = \frac{18}{2}=9

Mas como encontrar o k?
o {a}_{k} já foi dado como 239, mas o que é o k... isso é que não entendi *-) :$
O que tenho que usar para achar o k ?
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor young_jedi » Sex Jun 21, 2013 23:05

na verdade você tem que a5-a3 é igual a 14 e a2 igual a 18, você se confundiu na hora de substituir.
após corrigir e encontrar o r utilize

a_k=a_1+(k-1)r

239=a_1+(k-1)r
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 23:55

vou tentar .-.
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 23:57

Não '-' confundi não a questão diz que a5-a3 é igual a 18 e a2 igual a 14

Imagem

com as orientações que você me passou (que agradeço muito, muito, muito mesmo) encontrei o valor de 27 para K ...
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor young_jedi » Sáb Jun 22, 2013 11:06

Esta certo é isso mesmo!!!

k=27
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sáb Jun 22, 2013 16:08

Muito obrigado por a paciência e mostrar o caminho para resolver a questão Young
Agradeço muito mesmo...
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}