• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor viniciusgonzalez » Seg Jun 03, 2013 19:42

Boa noite pessoal, estou com algumas dúvidas em relação a inequação modular com 2 ou mais módulos.
Dei uma pesquisada aqui pelo fórum e não encontrei nada que sanasse minha dúvida.
Vamos lá.

|x+4|<=|2x-6|

Resolvi assim

x+4 <= 2x - 6
-x <= -10 (-1)
x => 10

x+4 <= -2x + 6 (repare que não virei o sinal de desigualdade)
3x <= 2
x<= 2/3

Até aí tudo bem, está batendo direitinho com meu gabarito. Porém tem essa questão que é parecida.

|3+2x| < |4-x|

Tentei resolver do mesmo jeito!

3+2x < 4-x
3x<1
x<1/3

3+2x < -4 +x (Repare que TAMBÉM não virei o sinal de desigualdade)
x < -7

Porém no meu gabarito é x > -7, e eu ja revirei toda internet e não estou conseguindo entender por quê. Alguém pode me ajudar?
viniciusgonzalez
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 03, 2013 19:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: Inequação Modular

Mensagempor e8group » Seg Jun 03, 2013 22:11

Na verdade temos que considerar 4 possibilidades ,são elas :

(1) x-4 \geq 0 e 3/2 + x \geq 0   \iff x \in [4,+\infty)

(2) x-4 < 0 e 3/2 + x < 0   \iff x \in (-\infty,-3/2)

(3) x-4 > 0 e 3/2 + x < 0 ,neste caso a interseção é vazia .

(4) x-4 < 0 e 3/2 + x > 0  \iff x \in (-3/2,4)

Observe que o conjunto solução de 2|3/2 + x| = |3+2x| < |4-x| = |x-4| pelo caso (1) e (2) são iguais , como a interseção de (1) por (2) é vazia , a solução tem satisfazer (1) ou (2).Veja ,

x-4  < 3 +2x  \implies  x > -7 , logo S_2 = (-7,+\infty) \cap ( -\infty,-3/2) = (-7,-3/2) é um conjunto solução .Como no caso (3) a interseção é vazia ,só restou o última possibilidade .Segue então

-(x-4) < 3+2x  \implies 3x > 1 \implies  x > 1/3 e portanto S_4 = (1/3,+\infty) \cap (-3/2,4) = (1/3,4) é o conjunto solução .Logo a reunião dos dois conjuntos obtidos acima é a solução da desigualdade .


O gabarito está errado , 10 > - 7 , mas |4-10|=6 < |3+20| = 23 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Inequação Modular

Mensagempor e8group » Ter Jun 04, 2013 21:26

Desculpa ,cometi um equívoco , o conjunto solução para o caso (2) não é o mesmo conjunto solução para o caso (1) .No caso (1) , temos : | x-4| =  x-4 e |3+2x| =3+2x .Assim ,

|3+2x| < |4-x| \implies  3+2x < x - 4 \implies x < - 7 . Mas para x \in (-\infty ,-7) não temos : 4+x,3+2x > 0 ,logo S_1 = \{\} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59