• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Distancia] Geometria analitica

[Distancia] Geometria analitica

Mensagempor amigao » Sáb Mai 11, 2013 12:01

Estou com duvida em um problema de Geometria analitica, tentei de tudo mas etou tendo problemas alguem pode me ajudar?

enunciado:
Ache os pontos de r: {?1: x + y = 2 e ?2 : x = y + z } que distam ?(14/3) de s: x = y = z + 1.

Minha tentativa. Primeiro achei r pela intersecção entre os planos que dão origem a r . mas não consigo seguir em frente para achar os pontos com essa distancia.

agradeço
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Distancia] Geometria analitica

Mensagempor e8group » Sáb Mai 11, 2013 15:09

Após determinar a interseção entre os planos que designa a reta r .Considere \vec{v_s} ,P_0 ,P_r \text{e} P_s ,respectivamente, vetor diretor da reta s,ponto arbitrário pertencente à reta s ,um ponto particular da reta r que satisfaz d(P_r,s) = \sqrt{14/3}(poderemos ter mais de um) e P_s ponto da reta s mais próximo de P_r tal que \overrightarrow{P_rP_s} \perp \vec{v_s} .

Faça um desenho representando ambas retas .Note que,

a) \overrightarrow{P_oP_s} \parallel \vec{v_s} \implies \exists \alpha \in \mathbb{R} tal que \overrightarrow{P_oP_s} = \alpha \vec{v_s} .

b) \overrightarrow{P_rP_s} \perp \vec{v_s}  \iff \overrightarrow{P_rP_s} \cdot \vec{v_s}  = 0 .

c) O vetor \overrightarrow{P_rP_o} é combinação linear de \overrightarrow{P_rP_s} ,  \overrightarrow{P_sP_o} \implies  \overrightarrow{P_0P_s} = - \overrightarrow{P_rP_s}   + \overrightarrow{P_rP_o} .

Pelo item c) ,usando-se o item a) e multiplicando-se escalarmente ambos membos por \vec{v_s} segue-se que :

\alpha \vec{v_s} \cdot \vec{v_s} =   (- \overrightarrow{P_rP_s}   + \overrightarrow{P_rP_o})\cdot \vec{v_s} \iff  \alpha ||\vec{v_s}||^2 = - \overrightarrow{P_rP_s} \cdot \vec{v_s}  + \overrightarrow{P_rP_o} \cdot   \vec{v_s} que devido ao item b) ,resulta : \alpha = \frac{\overrightarrow{P_rP_o} \cdot   \vec{v_s}}{||\vec{v_s}||^2} . Aplicando este resultado no item a) ,obtemos :

\overrightarrow{P_oP_s} =\frac{\overrightarrow{P_rP_o} \cdot\vec{v_s}}{||\vec{v_s}||^2} \vec{v_s} .

Este último resultado implica P_s = P_0 + \frac{\overrightarrow{P_rP_o} \cdot\vec{v_s}}{||\vec{v_s}||^2} \vec{v_s} .

O ponto P_o é arbitrário ,podemos tomar por exemplo : P_0 =(1,1,2) \in s .O vetor diretor da reta s pode ser encontrado parametrizando a mesma ,ou encontrando outro ponto P_1 \in s para que \vec{v_s} = \overrightarrow{P_0P_1} .

Em relação ao ponto P_r terá que impor P_r = (x,y,z) \in r e d(P_r,P_s) = \sqrt{14/3} .

Acredito que estas informações sejam suficientes para prosseguir .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59