• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Notação de leibniz {dúvida}

Notação de leibniz {dúvida}

Mensagempor Danilo » Sáb Abr 27, 2013 13:15

'' Seja y = u² onde u = u(x) é uma função derivável. Verifique que \frac{dy}{dx} = 2u\frac{du}{dx}.

Solução

y = u\cdotu \Rightarrow \frac{dy}{dx} = \frac{d}{dx}\left(u\cdot u \right) = \frac{du}{dx}u + u \frac{du}{dx}

Assim, \frac{dy}{dx} = 2u\frac{du}{dx}."

Bom, sei que \frac{dy}{dx} significa f'(x) ou derivada de y em relação a x. E sei que \frac{du}{dx} significa u'(x) ou derivada de y em relação a x. Mas não sei como interpretar 2u \frac{du}{dx}... não compreendo a igualdade que o exemplo quer mostrar. Porque, para mim, 2u \frac{du}{dx} = 2u \cdot u'(x) ou u = 2u². Essa notação ajuda para resolver vários exercícios mas eu não a entendo completamente... Grato a quem puder ajudar !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Notação de leibniz {dúvida}

Mensagempor e8group » Sáb Abr 27, 2013 14:51

Note que 2u\frac{du}{dx} é o mesmo que 2u \cdot u' notação esta que vc está mais familiarizado .

Dica : Tome g(x) =x^2 .Assim , y = g(u(x)) . Pela regra da cadeia ,

y' = g'(u(x)) \cdot u'(x) que é o mesmo que \frac{dy}{dx} =  \frac{dg(u(x))}{d(u(x))} \cdot  \frac{du(x)}{dx} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Notação de leibniz {dúvida}

Mensagempor Danilo » Sáb Abr 27, 2013 15:54

Obrigado.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}