• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Função de duas variáveis

[LIMITES] Função de duas variáveis

Mensagempor Sohrab » Ter Abr 23, 2013 03:18

Estou em um exercício onde pede-se para calcular o seguinte limite:

\lim_{x,y\rightarrow0,0}  \frac{{x}^{³}+{y}^{³}}{{x}^{2}+{y}^{2}}

reescrevendo..

\lim_{x,y\rightarrow0,0}  x\frac{{x}^{2}}{{x}^{2}+{y}^{2}} +\lim_{x,y\rightarrow0,0}  y\frac{{y}^{2}}{{x}^{2}+{y}^{2}}
certo?

ai me disseram para usar o teorema do limite de função limitada vezes função que vai pra zero, que o limite daria zero..
mas cadê a função limitada ai? podem me ajudar? obrigado!!

edit: outra dúvida pertinente ao assunto.. como posso provar que um limite desse tipo não existe? Obrigado.
edit2: creio que a minha dificuldade esteja em 'perceber' e provar que uma função é limitada. como posso fazer isso?
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Re: [LIMITES] Função de duas variáveis

Mensagempor young_jedi » Ter Abr 23, 2013 11:58

a função limitada é o seguinte

\frac{x^2}{x^2+y^2}<\frac{x^2+y^2}{x^2+y^2}

para qualquer que seja x ou y

então simplificando

\frac{x^2}{x^2+y^2}<1

ou seja esta função é limitada ao valor 1 esse é o maximo valor que ela assume então no primeiro limite voce tem que

\lim_{x,y\to0,0} x.\frac{x^2}{x^2+y^2}<\lim_{x,y\to0,0} x.1

mais temos que

\lim_{x,y\to0,0} x.1=0

então

\lim_{x,y\to0,0} x.\frac{x^2}{x^2+y^2}=0

poceda de forma semelhante para o outro limite
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [LIMITES] Função de duas variáveis

Mensagempor Sohrab » Ter Abr 23, 2013 14:30

Entendo.. mas porque ela precisa ser limitada? Bastaria que o limite convergisse, não? porque ai seria 0*(algum número real) = 0
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Re: [LIMITES] Função de duas variáveis

Mensagempor young_jedi » Ter Abr 23, 2013 20:18

sim, é exatamente isso que quer dizer limitada, significa que ela possui um valor maximo, ou seja multiplicada por zero resultara em zero
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [LIMITES] Função de duas variáveis

Mensagempor Sohrab » Qua Abr 24, 2013 01:12

young_jedi escreveu:a função limitada é o seguinte

\frac{x^2}{x^2+y^2}<\frac{x^2+y^2}{x^2+y^2}

para qualquer que seja x ou y

então simplificando

\frac{x^2}{x^2+y^2}<1

ou seja esta função é limitada ao valor 1 esse é o maximo valor que ela assume então no primeiro limite voce tem que

\lim_{x,y\to0,0} x.\frac{x^2}{x^2+y^2}<\lim_{x,y\to0,0} x.1

mais temos que

\lim_{x,y\to0,0} x.1=0

então

\lim_{x,y\to0,0} x.\frac{x^2}{x^2+y^2}=0

poceda de forma semelhante para o outro limite



estava aqui pensando.. como você sabe que a função é limitada superior e inferiormente por 1?
Porque veja..

para x e y diferentes de 0

y² > ou = 0

somando x²..

y² + x² > ou = 0 + x²

dividindo ambos os lados por x²+y²

1 > ou igual \frac{x^2}{x^2+y^2}

isso nos provou que ela é limitada superiormente (ou seja, é sempre menor do que 1)

ai tentei proceder assim para provar que ela é sempre maior do que -1 também:

|x|² = x²

então

\frac{x^2}{x^2+y^2} = \frac{|x^2|}{|x^2|+|y^2|}

e ai, fiz
= |\frac{x^2}{x^2+y^2}| < ou = 1
<=> -1 < ou igual \frac{x^2}{x^2+y^2} < ou igual 1
só que acho que está errada essa minha passagem, pois a desigualdade triangular diz que
|a+b| < ou igual |a|+|b|

ou eu posso fazer isso de passar o módulo para a fração toda, já que está tudo ao quadrado?
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Re: [LIMITES] Função de duas variáveis

Mensagempor young_jedi » Qua Abr 24, 2013 09:53

oque voce fez de passar o modulo sobre a fração toda é valido

mais repare que quaisquer que seja x e y a fração vai sempre resultar em um valor positivo portanto ela é sempre maior ou igual a 0 sendo assim seu limite inferior é 0 e não -1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [LIMITES] Função de duas variáveis

Mensagempor Sohrab » Qui Abr 25, 2013 06:03

opa, tem razão. :y:
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Re: [LIMITES] Função de duas variáveis

Mensagempor brunno10 » Qua Mai 01, 2013 00:28

Ola, pessoal!
gostaria de saber se voces tem alguma video-aula referente a como fazer o calculo do limite de uma função que apresente
quiciente indeterminado?
agradeço
brunno10
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 01, 2013 00:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 25 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D