• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor matmatco » Sáb Abr 20, 2013 18:09

não estou entendendo o porque \lim_{x\to 0-}x{e}^{\frac{1}{x}} = 0 e \lim_{x\to 0+}x{e}^{\frac{1}{x}}=\infty
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Limite

Mensagempor e8group » Sáb Abr 20, 2013 18:52

Observe que \lim_{x\to 0^-} 1/x = -\infty e \lim_{x\to 0^+} 1/x = +\infty . Assim ,

e^x \to 0 quando x \to -\infty e e^x \to +\infty quando x\to +\infty .Mas temos uma forma indeterminada 0 \cdot +\infty no segundo limite .Terá que aplicar a regra de L'Hospital (talvez) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor matmatco » Dom Abr 21, 2013 10:17

obrigado
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.