• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana (soma dos 4 angulos)

Geometria Plana (soma dos 4 angulos)

Mensagempor Rafael Pitzer » Seg Fev 11, 2013 18:54

Imagem

1- ? = 180-y + 180-?
2- ? = 180-y + 180-?
3- ? = y + 180-?
4- ? = y + 180-?

y = 180-?+180-?

substituindo o y em 3 por exemplo

? = 180-?+180-?+180-? efetuando a soma de ? nos dois lados
?+? = 180-?+180+180-? efetuando a soma de ? nos dois lados
?+?+? = 180+180+180-? efetuando a soma de ? nos dois lados
?+?+?+? = 180+180+180
?+?+?+? = 540°

Gostaria de saber se o meu raciocínio está correto.
Rafael Pitzer
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jan 30, 2013 12:12
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor young_jedi » Seg Fev 11, 2013 20:36

amigo eu calculei aqui usando um procedimento diferente e o resultado deu esse mesmo
540º , porem não entendi como voce chegou nas relações das primeiras equações que voce colocou, se tivesse com demonstrar, ficaria grato.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor DanielFerreira » Ter Fev 12, 2013 12:54

Rafael,
seu raciocínio está correto!

Young_jedi,
o Rafael fez o seguinte: atribuiu a um dos ângulos uma variável bem parecida com um dos ângulos dado. Confesso que demorei a perceber isso. [risos]!

di.png
di.png (9.71 KiB) Exibido 1869 vezes
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor young_jedi » Ter Fev 12, 2013 13:51

a agora sim entendi, tem uma variavel y, eu estava achando que era \gamma
então esta tudo certo

valeu pela demonstração ai danjr5
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor DanielFerreira » Ter Fev 12, 2013 17:02

:y:

Até a próxima!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59