• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integração

Integração

Mensagempor dexter » Ter Fev 05, 2013 11:14

\int_{}^{}3{e}^{x}+4{(2)}^{x}dx
Agradeço!
dexter
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 04, 2013 10:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integração

Mensagempor e8group » Ter Fev 05, 2013 14:27

Note que , \int (3\cdot e^x +4 \cdot 2^x)dx  = 3\cdot \int e^x dx   + 4\cdot \int e^{x\cdot ln(2) } dx .


Onde , e^{x\cdot ln(2) } = 2^x .

Visto que (e^x)' = e^x e ( e^{x\cdot ln(2)} )' = e^{x\cdot ln(2)} \cdot (x\cdot ln(2))' = 
e^{x\cdot ln(2)} \cdot ln(2)  \implies   ( e^{x\cdot ln(2)} /ln(2))' = e^{x\cdot ln(2) } =2^x .


Disso concluímos que ,

\int (3\cdot e^x +4 \cdot 2^x)dx  = 3 \cdot e^x + 4 \cdot \frac{e^{x\cdot ln(2)}}{ln(2)} + C =  3 \cdot e^x +  \frac{2^{x+2} }{ln(2)}  + C .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integração

Mensagempor dexter » Ter Fev 05, 2013 15:49

No gabarito: 3{e}^{x}+\frac{4}{ln2}^{2x}+c
Está ok?
dexter
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 04, 2013 10:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integração

Mensagempor e8group » Ter Fev 05, 2013 19:45

e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.