• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite com 2 variáveis] dúvida na resolução

[limite com 2 variáveis] dúvida na resolução

Mensagempor Fabio Wanderley » Dom Dez 09, 2012 20:32

Boa noite a todos,

Estou no início do estudo de Limites com duas variáveis. Vejam essa resolução de um exemplo do Guidorizzi (Um curso de Cálculo, vol. 2, 5 ed.).

Calcule, caso exista, \lim_{(x,y)\rightarrow (0,0)}\frac{x^2}{x^2+y^2}.

Solução

Seja f(x,y) = \frac{x^2}{x^2+y^2} e tomemos \gamma_1(t)=(0,t) e \gamma_2(t)=(t,t).

\lim_{t\rightarrow 0}f(\gamma_1(t))=\lim_{t\rightarrow 0}\frac{0^2}{0^2+t^2}=0

e

\lim_{t\rightarrow 0}f(\gamma_2(t))=\lim_{t\rightarrow 0}\frac{t^2}{t^2+t^2}=\frac{1}{2}

Logo, \lim_{(x,y)\rightarrow (0,0)}\frac{x^2}{x^2+y^2} não existe.

-----------------------------------------------------------------------------------------------------

Gostaria de saber se posso tomar também \gamma_1(t)=(t,0) e \gamma_2(t)=(0,t).

Assim, terei \lim_{t\rightarrow 0}f(\gamma_1(t))=\lim_{t\rightarrow 0}\frac{t^2}{t^2+0^2}=1

e

\lim_{t\rightarrow 0}f(\gamma_2(t))=\lim_{t\rightarrow 0}\frac{0^2}{0^2+t^2}=0

Portanto, o limite dado não existe.

Está correto?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite com 2 variáveis] dúvida na resolução

Mensagempor MarceloFantini » Dom Dez 09, 2012 23:54

Sim, está correto. Basta tomar dois caminhos distintos e mostrar que os limites são diferentes, quaisquer caminhos que sejam.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [limite com 2 variáveis] dúvida na resolução

Mensagempor Fabio Wanderley » Seg Dez 10, 2012 10:55

MarceloFantini escreveu:Sim, está correto. Basta tomar dois caminhos distintos e mostrar que os limites são diferentes, quaisquer caminhos que sejam.


Obrigado! Creio que assimilei a ideia então.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59