• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda a resolver

Ajuda a resolver

Mensagempor Sherminator » Sex Nov 23, 2012 16:31

Boa tarde pessoal, nem sei como resolver este problema, alguém me ajuda? Não consigo de forma alguma

A=\begin{pmatrix}
   2 & -3  \\ 
   3 & 1 
\end{pmatrix}

B= \frac{1}{11}\begin{pmatrix}
   7 & -2 & 1 \\ 
   1 & 5 & 14 
\end{pmatrix}

C= \begin{pmatrix}
   1 & 1 & 1 \\ 
   0 & 0 & -1 
\end{pmatrix}

E= \begin{pmatrix}
   -1 & 3 & 4 \\ 
   1 & 2 & -1 
\end{pmatrix}

Sabendo que a matriz D=A*B, determinar a matriz X tal que:

(2X - D) - \frac{1}{2}(E+C) = O_{2x3}

A, B, C e E são matrizes reais.


Primeiro não consigo calcular a A*B devido a ter a fração \frac{1}{11} na matriz B

Segundo não tenho mesmo a mínima ideia de como se calcula o X, depois também não sei o que significa o O no final

Alguém me pode ajudar? Ou então resolver para eu ver como se faz?
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: Ajuda a resolver

Mensagempor MarceloFantini » Sex Nov 23, 2012 23:29

Quando um número multiplica uma matriz significa que ele multiplica todos os elementos da matriz, portanto pode ser posto em evidência. Para efetuar o produto A \cdot B faça como uma multiplicação normal de matrizes, e depois multiplique todos os elementos por \frac{1}{11}.

A notação 0_{2 \times 3} quer dizer a matriz nula com duas linhas e três colunas, ou 0_{2 \times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.

Para calcular a matriz X resolva normalmente:

(2X - D) - \frac{1}{2} (E+C) = 0_{2 \times 3} \implies 2X - D = \frac{1}{2} (E+C) \implies @X = \frac{1}{2} (E+C) + D \implies X = \frac{1}{4} (E+C) + \frac{1}{2}D.

Agora é só calcular. A soma E+C é tranquilo, basta somar componente a componente. O que dá um pouco mais de trabalho é a matriz D. Depois é só multiplicar pelos respectivos coeficientes e terá completado a solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda a resolver

Mensagempor Sherminator » Sáb Nov 24, 2012 07:40

Então a matriz D ficaria assim?

D= \frac{1}{11}\begin{pmatrix}
   11 & -19 & -40 \\ 
   22 & -1 & 17 
\end{pmatrix}

Ou assim depois de multiplicada?

D= \begin{pmatrix}
   1 & \frac{-19}{11} & \frac{-40}{11} \\ 
   2 & \frac{-1}{11} & \frac{17}{11} 
\end{pmatrix}

Como seria mais correto deixá-la?

Já reparei que depois é uma maneira de isolar o X, verdade?

Então já agora me explique como poderia eu calcular o X nestas aqui, visto agora ter mais de um X, não estou a ver forma de o isolar.

\frac{1}{2} (X+A) = 3[X+(A-X)]+E aqui tenho 3 X, como arranjo forma de os calcular?

Nesta parece ser mais difícil ainda:

\frac{1}{3}(AE^T+X) = 2CI+\frac{1}{6}[X+(A-X)-A]
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: Ajuda a resolver

Mensagempor MarceloFantini » Sáb Nov 24, 2012 17:12

Acredito que não exista um modo melhor de deixá-la. Tecnicamente quanto mais simplificado melhor, então seria a segunda opção.

Sim, é verdade: a menos de "divisão" de matrizes, você trabalha com matrizes como números: multiplicação à esquerda ou direita, soma e subtração de matrizes e multiplicação por escalares (números).

Sobre a expressão \frac{1}{2}(X+A) = 3[X + (A-X)] +E, note que X + (A-X) = A, logo ela torna-se

\frac{1}{2} (X+A) = 3A + E \implies X+A = 6A +2E \implies X = 5A +2E.

Na segunda expressão que mostrou, acredito que esteja errada. A multiplicação A \cdot E^t não é possível pois E é uma matriz 2 \times 3, logo E^t é uma matriz 3 \times 2. Como o número de linhas é diferente do número de colunas a multiplicação não é possível.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 28 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D