• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação com exponencial.

Equação com exponencial.

Mensagempor Yasmin Cristina » Qua Nov 21, 2012 11:21

Olá, gostaria de uma ajuda nesse exercício:

A soma das raízes reais da equação 9^x=10.3^x-9 é igual a:

a) 0
b)2
c)3
d)9
e)10

OBS. a resposta é "B"

cheguei até a equação abaixo:

(3^x)^2-10.3^x+9=0

a partir daí eu não sei mais como resolver com essas exponenciais no meio...
=/
Yasmin Cristina
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Out 31, 2012 23:09
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação com exponencial.

Mensagempor Cleyson007 » Qua Nov 21, 2012 11:30

Olá Yasmin!

Tente resolver reescrevendo dessa forma: \frac{{9}^{x}+9}{{3}^{x}}=10

Att,

cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação com exponencial.

Mensagempor Yasmin Cristina » Qua Nov 21, 2012 11:58

Professor, ainda não estou conseguindo resolver, mesmo da forma que vc me sugeriu..
Também tentei fatorar colocando o 3^x em evidência....mas mesmo assim não deu certo..
=/
Yasmin Cristina
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Out 31, 2012 23:09
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação com exponencial.

Mensagempor Cleyson007 » Qua Nov 21, 2012 13:52

Olá Yasmin!

\frac{{3}^{2x}+3^2}{{3}^{y}}=10

Fazendo {3}^{x}=y, temos:

\frac{{y}^{2}+9}{y}=10\Rightarrow\,y^2-10y+9=0

Resolvendo essa equação do 2° grau, encontramos: y=9 e y=1

Como estipulamos que {3}^{x}=y, temos:

{3}^{x}=9\Rightarrow\,{3}^{x}={3}^{2}

Cortando as bases --> x=2

{3}^{x}=1\Rightarrow\,{3}^{x}={3}^{0}

Cortando as bases, temos: x=0

Soma das raizes: 2+0=2

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação com exponencial.

Mensagempor Yasmin Cristina » Qua Nov 21, 2012 14:19

Aii meu Deus!! era só isso?!!

Tah perfeitoo... entendii agr.. ^^
Yasmin Cristina
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Out 31, 2012 23:09
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação com exponencial.

Mensagempor Cleyson007 » Qua Nov 21, 2012 14:28

Ok Yasmin!

Era só isso mesmo :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}