• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Re: [Logaritmo]

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 14:13

Me ajudem a simplificar?
log(1-{a}^{3})-log(1-a)-log[(1+a)+1]
log(1-{a}^{3})-log(1-a)-log(1+a)
log\frac{\frac{(1-{a}^{3})}{(1-a)}}{(1+a)}
\frac{(1-{a}^{3})}{(1-a)}.\frac{1}{(1+a)}
\frac{(1-{a}^{3})}{(1-{a}^{2})}
E então?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 14:52

a equação é

log(1-a^3)-log(1-a)-log(1+a+1)

log\frac{1-a^3}{(1-a)(2+a)}


mais repare que

(1-a^3)=(1-a)(1+a+a^2)

então

log\frac{1-a^3}{(1-a)(2+a)}=log\frac{(1-a)(1+a+a^2)}{(1-a)(2+a)}

simplificando

log\frac{\cancel{(1-a)}(1+a+a^2)}{\cancel{(1-a)}(2+a)}=log\frac{1+a+a^2}{2+a}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 15:10

young_jedi escreveu:a equação é

log(1-a^3)-log(1-a)-log(1+a+1)

log\frac{1-a^3}{(1-a)(2+a)}


mais repare que

(1-a^3)=(1-a)(1+a+a^2)

então

log\frac{1-a^3}{(1-a)(2+a)}=log\frac{(1-a)(1+a+a^2)}{(1-a)(2+a)}

simplificando

log\frac{\cancel{(1-a)}(1+a+a^2)}{\cancel{(1-a)}(2+a)}=log\frac{1+a+a^2}{2+a}


Obigada, eu entendi o procedimento até aqui. Mas, como continua?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 15:20

daqui em diante não encontrei nenhuma maneria de simpificar mais

poderia ficar

log(1+a+a^2)-log(2+a)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 15:42

young_jedi escreveu:daqui em diante não encontrei nenhuma maneria de simpificar mais

poderia ficar

log(1+a+a^2)-log(2+a)


As alternativas são 0, 1, 2 e log\left(\frac{1+a}{1-a} \right) =s
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 16:39

não encontrei nenhuma maneira de chegar a uma destas alternativas...

verifique se o enunciado é este mesmo que voce postou, se não tem nada mais informando no exercicio
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 18:23

young_jedi escreveu:não encontrei nenhuma maneira de chegar a uma destas alternativas...

verifique se o enunciado é este mesmo que voce postou, se não tem nada mais informando no exercicio


Não vejo qual é o problema... Esta é uma questão da UFOP-MG e o enunciado diz somente "Ao simplificar a expressão obtém-se". Acabei de verificar e eu digitei corretamente a expressão. =/
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 19:39

tem como voce me passar um link com a questão?
ai eu do uma olhada
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 20:13

young_jedi escreveu:tem como voce me passar um link com a questão?
ai eu do uma olhada


Desculpe, não encontrei na internet. Ela está na minha apostila de matemática feita pela minha própria escola. Mas ela está exatamente assim:
(UFOP-MG)Ao simplificar a expressão log(1-{a}^{3})-log(1-a)-log[(1+a)+1] obtém-se:
a) 0
b) 1
c) 2
d) log\left(\frac{1+a}{1-a} \right)
A não ser que contenha algum erro de digitação na apostila.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 21:06

obrigado tamysoares

verifiquei a questão e realmente não consegui chegar em nenhuma das respostas, talvez tenha algo que agente não esteja conseguindo visualizar, mas o mais provavel é que exista algum erro de digitação em sua apostila, se tiver como voce conferir com o pessoal que faz a apostila ou com algum professor é melhor.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sáb Nov 17, 2012 09:36

young_jedi escreveu:obrigado tamysoares

verifiquei a questão e realmente não consegui chegar em nenhuma das respostas, talvez tenha algo que agente não esteja conseguindo visualizar, mas o mais provavel é que exista algum erro de digitação em sua apostila, se tiver como voce conferir com o pessoal que faz a apostila ou com algum professor é melhor.


ok, muito obrigada =D
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?