• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Re: [Logaritmo]

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 14:13

Me ajudem a simplificar?
log(1-{a}^{3})-log(1-a)-log[(1+a)+1]
log(1-{a}^{3})-log(1-a)-log(1+a)
log\frac{\frac{(1-{a}^{3})}{(1-a)}}{(1+a)}
\frac{(1-{a}^{3})}{(1-a)}.\frac{1}{(1+a)}
\frac{(1-{a}^{3})}{(1-{a}^{2})}
E então?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 14:52

a equação é

log(1-a^3)-log(1-a)-log(1+a+1)

log\frac{1-a^3}{(1-a)(2+a)}


mais repare que

(1-a^3)=(1-a)(1+a+a^2)

então

log\frac{1-a^3}{(1-a)(2+a)}=log\frac{(1-a)(1+a+a^2)}{(1-a)(2+a)}

simplificando

log\frac{\cancel{(1-a)}(1+a+a^2)}{\cancel{(1-a)}(2+a)}=log\frac{1+a+a^2}{2+a}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 15:10

young_jedi escreveu:a equação é

log(1-a^3)-log(1-a)-log(1+a+1)

log\frac{1-a^3}{(1-a)(2+a)}


mais repare que

(1-a^3)=(1-a)(1+a+a^2)

então

log\frac{1-a^3}{(1-a)(2+a)}=log\frac{(1-a)(1+a+a^2)}{(1-a)(2+a)}

simplificando

log\frac{\cancel{(1-a)}(1+a+a^2)}{\cancel{(1-a)}(2+a)}=log\frac{1+a+a^2}{2+a}


Obigada, eu entendi o procedimento até aqui. Mas, como continua?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 15:20

daqui em diante não encontrei nenhuma maneria de simpificar mais

poderia ficar

log(1+a+a^2)-log(2+a)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 15:42

young_jedi escreveu:daqui em diante não encontrei nenhuma maneria de simpificar mais

poderia ficar

log(1+a+a^2)-log(2+a)


As alternativas são 0, 1, 2 e log\left(\frac{1+a}{1-a} \right) =s
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 16:39

não encontrei nenhuma maneira de chegar a uma destas alternativas...

verifique se o enunciado é este mesmo que voce postou, se não tem nada mais informando no exercicio
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 18:23

young_jedi escreveu:não encontrei nenhuma maneira de chegar a uma destas alternativas...

verifique se o enunciado é este mesmo que voce postou, se não tem nada mais informando no exercicio


Não vejo qual é o problema... Esta é uma questão da UFOP-MG e o enunciado diz somente "Ao simplificar a expressão obtém-se". Acabei de verificar e eu digitei corretamente a expressão. =/
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 19:39

tem como voce me passar um link com a questão?
ai eu do uma olhada
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 20:13

young_jedi escreveu:tem como voce me passar um link com a questão?
ai eu do uma olhada


Desculpe, não encontrei na internet. Ela está na minha apostila de matemática feita pela minha própria escola. Mas ela está exatamente assim:
(UFOP-MG)Ao simplificar a expressão log(1-{a}^{3})-log(1-a)-log[(1+a)+1] obtém-se:
a) 0
b) 1
c) 2
d) log\left(\frac{1+a}{1-a} \right)
A não ser que contenha algum erro de digitação na apostila.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sex Nov 16, 2012 21:06

obrigado tamysoares

verifiquei a questão e realmente não consegui chegar em nenhuma das respostas, talvez tenha algo que agente não esteja conseguindo visualizar, mas o mais provavel é que exista algum erro de digitação em sua apostila, se tiver como voce conferir com o pessoal que faz a apostila ou com algum professor é melhor.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Sáb Nov 17, 2012 09:36

young_jedi escreveu:obrigado tamysoares

verifiquei a questão e realmente não consegui chegar em nenhuma das respostas, talvez tenha algo que agente não esteja conseguindo visualizar, mas o mais provavel é que exista algum erro de digitação em sua apostila, se tiver como voce conferir com o pessoal que faz a apostila ou com algum professor é melhor.


ok, muito obrigada =D
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}