• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com Limite com raiz

Ajuda com Limite com raiz

Mensagempor GuilhermeMoreira » Qua Nov 14, 2012 00:34

Gostaria de saber como resolver este limite

\lim_{x\rightarrow2} \frac{\sqrt[3]{5x-2} - 2}{\sqrt[2]{x-1}-1}
GuilhermeMoreira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 14, 2012 00:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia química
Andamento: cursando

Re: Ajuda com Limite com raiz

Mensagempor Claudin » Qua Nov 14, 2012 01:05

Tente multiplicar pelo conjugado, talvez é uma boa saída.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda com Limite com raiz

Mensagempor e8group » Qua Nov 14, 2012 12:16

Vamos separa os limites ,

\lim_{x\to 2} \frac{\sqrt[3]{5x - 2}   - 2}{\sqrt{x-1} - 1} =  \lim_{x\to 2} \frac{\sqrt[3]{5x -2} }{\sqrt{x-1} -1}  - \lim_{x\to 2} \frac{2}{\sqrt{x-1} - 1}

Agora vamos fazer que o Claudin disse ,

\frac{\sqrt{x-1} +1}{\sqrt{x-1}+1} \left( \lim_{x\to 2} \frac{\sqrt[3]{5x -2} }{\sqrt{x-1} -1}  - \lim_{x\to 2} \frac{2}{\sqrt{x-1} - 1}  \right )


Que se resume em \lim_{x\to 2} \frac{\sqrt[3]{5x -2}(\sqrt{x-1}+1) }{|x-1| + 1}  - \lim_{x\to 2} \frac{2 (\sqrt{x-1}+1)}{|x-1| + 1} .

Como x > 0


\lim_{x\to 2} \frac{\sqrt[3]{5x - 2}   - 2}{\sqrt{x-1} - 1} =  \lim_{x\to 2} \frac{\sqrt[3]{5x -2}(\sqrt{x-1} +1)}{x}  - \lim_{x\to 2} \frac{2 (\sqrt{x-1}+1)}{x}

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)