por e8group » Seg Nov 12, 2012 21:45
Pessoal , deparei com uma questão elementar que me fez questionar sobre algo . Através de uma igualdade , nós elevamos ambos lados da igualdade ao quadrado e manteremos a igualdade verdadeira . Será mesmo ? Na minha opinião isto não vale para todos os casos .
Por exemplo , segue uma questão a seguir que o objetivo é identificar o erro na solução feito por um aluno .
Dada a inequação modular
Solução.
i)
ii)
iii)
iv) Como

e

Segue que

que da como solução
Não tenho o gabarito , mas analisando acredito que o erro está na etapa ( iii) . Não estou conseguindo formula um argumento que prove o erro dele . Por favor , alguém descorda ? Se não , qual argumento você usaria ?
Entretanto quando eu começo desenvolver a questão desde o ponto inicial , eu consigo mostrar que todos valores reais exceto

satisfaz

. Como segue a segue os passos a seguir .
De fato ,

. Pois ,

.
Quando

e quando

, ou seja para quaisquer

temos que
OBS. Usei abs para modulo , por causa da configuração da barra .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Seg Nov 12, 2012 21:51
OBS .:

e

. Isso é verdade , mas

.O que não é verdade para x diferente que - 1 .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Seg Nov 12, 2012 22:11
Primeiro,

. Segundo, já está errado na segunda etapa. Teremos

, não igual. Tome

. Então é claro que

, mas

, não maior ou igual. Então o processo de elevar ao quadrado está errado.
Basta perceber que

,

e portanto

para todo

. Agora, existe outra forma, bem mais trabalhosa.
Para resolver, considere a função nos seguintes intervalos:

,

e

.
No primeiro intervalo teremos

, daí

e

. Como assumimos

, todo valor aqui é solução.
No segundo intervalo teremos

, que nos leva a

que é verdadeiro sempre. Portanto

são soluções.
No terceiro e último intervalo teremos

, que nos leva a

e

. Como assumimos

, todo valor é solução.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Seg Nov 12, 2012 22:27
Peço desculpas digitei errado na segunda etapa é maior ou igual , não igual . Agradeço muito , gostei muito da resolução .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7231 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- inequação modular
por manuoliveira » Dom Ago 22, 2010 22:30
- 1 Respostas
- 3369 Exibições
- Última mensagem por Dan

Seg Ago 23, 2010 15:38
Álgebra Elementar
-
- Inequação modular
por scggomes » Qui Abr 21, 2011 17:22
- 3 Respostas
- 3056 Exibições
- Última mensagem por MarceloFantini

Qui Abr 21, 2011 20:54
Cálculo: Limites, Derivadas e Integrais
-
- Inequação Modular
por Rafael16 » Qui Mar 08, 2012 20:24
- 2 Respostas
- 2306 Exibições
- Última mensagem por Rafael16

Qui Mar 08, 2012 21:21
Funções
-
- inequação modular
por haiashi » Qua Jun 06, 2012 00:33
- 0 Respostas
- 1479 Exibições
- Última mensagem por haiashi

Qua Jun 06, 2012 00:33
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.