por MrJuniorFerr » Sáb Out 27, 2012 20:02
Estou com dúvida no seguinte exercício:

Estou com uma certa dificuldade nas integrais trigonométricas neste conteúdo, o resto consigo fazer.
Tentei fazer este, mas não deu certo...
Eu havia feito a seguinte substituição:


Após montar a substituição, fiz isto:

Depois disto, ao tentar fazer, cheguei no resultado:

Mas sei que está errado pois,

Alguém pode me ajudar?
Outra pergunta: Só pode jogar constantes para fora da integral?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Sáb Out 27, 2012 20:17
neste caso uma melhor substituição seria


substituindo na integral



esta integral é mais tranquila
respondendo sua pergunta, voce so pode tirar da integral constantes, não pode tirar termos que dependam da variavel de integração neste caso x.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MrJuniorFerr » Sáb Out 27, 2012 21:49
Entendi Jedi.
Mas se a integral fosse:

Como resolve-lo?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Sáb Out 27, 2012 22:54
eu faria a mesma substituição, entãoa integral ficaria

mais note que

então a intgral ficaria

esta integral da para resolver por antiderivada
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MrJuniorFerr » Sáb Out 27, 2012 23:33
young_jedi escreveu:mais note que

identidade trigonométrica?
Em derivadas, era possível esquivar-se das identidades trigonométricas porque os exercícios pediam somente que derivassem e não necessariamente simplificar ao máximo.
Em integrais é obrigatório simplificar ao máximo?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 28, 2012 00:26
Lembre-se das identidades

e

. Some as duas e isole

que você obterá a identidade afirmada.
Sobre simplificações, elas valem para o geral: em princípio, após todas as contas que você fizer deve-se simplificar ao máximo a resposta. O caso é que muitas vezes em derivadas, principalmente nas mais simples, a resposta já sai simplificado, o que não necessariamente é verdade em integração.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Dom Out 28, 2012 01:25
Entendi, fiz o que você disse e cheguei em tal identidade. Eu não conhecia este método de somar identidades e isolar algum termo para obter uma nova identidade
Tive um ensino fundamental e médio horrível, eu não estudava nem em véspera de provas, ou seja, entrei em uma universidade federal (por sorte) com uma base horrível em exatas, e to pagando o preço agora...
Ao menos abri meus olhos, talvez um pouco tarde, mas abri.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Regra da cadeia para derivadas parciais
por Maisa_Rany » Qua Nov 07, 2018 16:47
- 2 Respostas
- 9463 Exibições
- Última mensagem por Maisa_Rany

Qui Nov 08, 2018 16:33
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo II - Regra da Cadeia para várias variáveis
por Guga1981 » Qua Nov 11, 2020 02:22
- 3 Respostas
- 4434 Exibições
- Última mensagem por Guga1981

Dom Nov 22, 2020 05:02
Cálculo: Limites, Derivadas e Integrais
-
- [ regra da cadeia ]
por Marimar » Seg Nov 07, 2011 13:34
- 3 Respostas
- 3055 Exibições
- Última mensagem por MarceloFantini

Seg Nov 07, 2011 14:37
Cálculo: Limites, Derivadas e Integrais
-
- Regra da Cadeia
por Cleyson007 » Ter Mai 22, 2012 15:17
- 1 Respostas
- 1886 Exibições
- Última mensagem por joaofonseca

Ter Mai 22, 2012 19:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas- regra da cadeia
por genicleide » Qua Abr 20, 2011 14:28
- 4 Respostas
- 4943 Exibições
- Última mensagem por genicleide

Qua Abr 20, 2011 19:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.