• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Regra da cadeia para antidiferenciação

[Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Sáb Out 27, 2012 20:02

Estou com dúvida no seguinte exercício:

f(x)=\int x.cos(x^2)  dx

Estou com uma certa dificuldade nas integrais trigonométricas neste conteúdo, o resto consigo fazer.

Tentei fazer este, mas não deu certo...
Eu havia feito a seguinte substituição:

u=cos(x^2)

\frac{du}{dx}=-sen(x^2).2x

Após montar a substituição, fiz isto:

\int \frac{x}{-sen(x^2).2x}.\frac{-sen(x^2).2x}{x}xcos(x^2)dx

Depois disto, ao tentar fazer, cheguei no resultado: \frac{-1}{4}cotg(x^2)
Mas sei que está errado pois,
\frac{d[\frac{-1}{4}cotg(x^2)]}{dx} = \frac{1}{2}x cossec^2(x^2)

Alguém pode me ajudar?
Outra pergunta: Só pode jogar constantes para fora da integral?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor young_jedi » Sáb Out 27, 2012 20:17

neste caso uma melhor substituição seria

u=x^2

du=2.x.dx

substituindo na integral

\int\frac{2x}{2}cos(x^2).dx

\int\frac{1}{2}cos(u).du

\frac{1}{2}\int cos(u).du

esta integral é mais tranquila

respondendo sua pergunta, voce so pode tirar da integral constantes, não pode tirar termos que dependam da variavel de integração neste caso x.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Sáb Out 27, 2012 21:49

Entendi Jedi.

Mas se a integral fosse:

\int x.cos^2(x^2)dx

Como resolve-lo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor young_jedi » Sáb Out 27, 2012 22:54

eu faria a mesma substituição, entãoa integral ficaria

\frac{1}{2}\int cos^2(u).du

mais note que

cos^2(u)=\frac{1+cos(2u)}{2}

então a intgral ficaria

\frac{1}{2}\int\frac{1+cos(2u)}{2}du

esta integral da para resolver por antiderivada
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Sáb Out 27, 2012 23:33

young_jedi escreveu:mais note que

cos^2(u)=\frac{1+cos(2u)}{2}


identidade trigonométrica?
Em derivadas, era possível esquivar-se das identidades trigonométricas porque os exercícios pediam somente que derivassem e não necessariamente simplificar ao máximo.
Em integrais é obrigatório simplificar ao máximo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MarceloFantini » Dom Out 28, 2012 00:26

Lembre-se das identidades \sin^2 x + \cos^2 x = 1 e \cos 2x = \cos^2 x - \sin^2 x. Some as duas e isole \cos^2 x que você obterá a identidade afirmada.

Sobre simplificações, elas valem para o geral: em princípio, após todas as contas que você fizer deve-se simplificar ao máximo a resposta. O caso é que muitas vezes em derivadas, principalmente nas mais simples, a resposta já sai simplificado, o que não necessariamente é verdade em integração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Dom Out 28, 2012 01:25

Entendi, fiz o que você disse e cheguei em tal identidade. Eu não conhecia este método de somar identidades e isolar algum termo para obter uma nova identidade :-O
Tive um ensino fundamental e médio horrível, eu não estudava nem em véspera de provas, ou seja, entrei em uma universidade federal (por sorte) com uma base horrível em exatas, e to pagando o preço agora...
Ao menos abri meus olhos, talvez um pouco tarde, mas abri.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 25 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D