• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Regra da cadeia para antidiferenciação

[Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Sáb Out 27, 2012 20:02

Estou com dúvida no seguinte exercício:

f(x)=\int x.cos(x^2)  dx

Estou com uma certa dificuldade nas integrais trigonométricas neste conteúdo, o resto consigo fazer.

Tentei fazer este, mas não deu certo...
Eu havia feito a seguinte substituição:

u=cos(x^2)

\frac{du}{dx}=-sen(x^2).2x

Após montar a substituição, fiz isto:

\int \frac{x}{-sen(x^2).2x}.\frac{-sen(x^2).2x}{x}xcos(x^2)dx

Depois disto, ao tentar fazer, cheguei no resultado: \frac{-1}{4}cotg(x^2)
Mas sei que está errado pois,
\frac{d[\frac{-1}{4}cotg(x^2)]}{dx} = \frac{1}{2}x cossec^2(x^2)

Alguém pode me ajudar?
Outra pergunta: Só pode jogar constantes para fora da integral?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor young_jedi » Sáb Out 27, 2012 20:17

neste caso uma melhor substituição seria

u=x^2

du=2.x.dx

substituindo na integral

\int\frac{2x}{2}cos(x^2).dx

\int\frac{1}{2}cos(u).du

\frac{1}{2}\int cos(u).du

esta integral é mais tranquila

respondendo sua pergunta, voce so pode tirar da integral constantes, não pode tirar termos que dependam da variavel de integração neste caso x.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Sáb Out 27, 2012 21:49

Entendi Jedi.

Mas se a integral fosse:

\int x.cos^2(x^2)dx

Como resolve-lo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor young_jedi » Sáb Out 27, 2012 22:54

eu faria a mesma substituição, entãoa integral ficaria

\frac{1}{2}\int cos^2(u).du

mais note que

cos^2(u)=\frac{1+cos(2u)}{2}

então a intgral ficaria

\frac{1}{2}\int\frac{1+cos(2u)}{2}du

esta integral da para resolver por antiderivada
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Sáb Out 27, 2012 23:33

young_jedi escreveu:mais note que

cos^2(u)=\frac{1+cos(2u)}{2}


identidade trigonométrica?
Em derivadas, era possível esquivar-se das identidades trigonométricas porque os exercícios pediam somente que derivassem e não necessariamente simplificar ao máximo.
Em integrais é obrigatório simplificar ao máximo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MarceloFantini » Dom Out 28, 2012 00:26

Lembre-se das identidades \sin^2 x + \cos^2 x = 1 e \cos 2x = \cos^2 x - \sin^2 x. Some as duas e isole \cos^2 x que você obterá a identidade afirmada.

Sobre simplificações, elas valem para o geral: em princípio, após todas as contas que você fizer deve-se simplificar ao máximo a resposta. O caso é que muitas vezes em derivadas, principalmente nas mais simples, a resposta já sai simplificado, o que não necessariamente é verdade em integração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Regra da cadeia para antidiferenciação

Mensagempor MrJuniorFerr » Dom Out 28, 2012 01:25

Entendi, fiz o que você disse e cheguei em tal identidade. Eu não conhecia este método de somar identidades e isolar algum termo para obter uma nova identidade :-O
Tive um ensino fundamental e médio horrível, eu não estudava nem em véspera de provas, ou seja, entrei em uma universidade federal (por sorte) com uma base horrível em exatas, e to pagando o preço agora...
Ao menos abri meus olhos, talvez um pouco tarde, mas abri.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: