• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Preciso de Ajuda com Limites - URGENTE!!!

Preciso de Ajuda com Limites - URGENTE!!!

Mensagempor Josi » Qui Set 10, 2009 17:34

Tenho um prova amanhã, estava estudando e não consegui resolver esa questão.

\lim_{v->1}\frac{{v}^{4}-1}{{v}^{3}-1}

Sei que o fator em comum q poderá ser simplificado é (v-1) porque ao substituirmos se der zero no numerador e no denomidor o fator que será eliminado é aquele a que o x tende com o sinal modificado, mas não consigo chegar na simplificação.
Pelo livro, a resposta é 4/3, mas não consegui chegar nela.

Por favor me ajudem!!!
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Preciso de Ajuda com Limites - URGENTE!!!

Mensagempor Molina » Qui Set 10, 2009 17:49

Boa tarde, Josi.

\lim_{v->1}\frac{{v}^{4}-1}{{v}^{3}-1}

Uma forma fácil e rápida de calcular este limite é usando L'Hopital.

Só que para usar isso você já tem que ter estudado Derivadas, o que normalmente nos cursos vem depois de Limites.
Você já estudou Derivadas? Há tópicos no próprio fórum explicando mais sobre o assunto: search.php?st=0&sk=t&sd=d&keywords=l+hopital

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Preciso de Ajuda com Limites - URGENTE!!!

Mensagempor Josi » Qui Set 10, 2009 18:07

Não. Por enquanto tô só no limite mesmo.
A professora até falou q os repetentes q sabem não podem usar essa regra por que ela irá desconsiderar a questão.
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Preciso de Ajuda com Limites - URGENTE!!!

Mensagempor Molina » Qui Set 10, 2009 18:34

Ok, Josi.

Então vamos lá:

Podemos escrever (v^4-1)=(v^2-1)*(v^2+1)=(v-1)*(v+1)*(v^2+1)

e

(v^3-1)=(v-1)*(v^2+v+1)

Desta forma:

\lim_{v->1}\frac{{v}^{4}-1}{{v}^{3}-1}=\lim_{v->1}\frac{(v-1)*(v+1)*(v^2+1)}{(v-1)*(v^2+v+1)}


\lim_{v->1}\frac{(v+1)*(v^2+1)}{(v^2+v+1)}=\frac{(1+1)*(1^2+1)}{(1^2+1+1)}=\frac{4}{3}


Bom estudo e boa prova! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Preciso de Ajuda com Limites - URGENTE!!!

Mensagempor Josi » Qui Set 10, 2009 18:40

Muito Obrigada.
Estava fatorando errado. Agora entendi.

Valeu!!!
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?