por Josi » Qui Set 10, 2009 17:34
Tenho um prova amanhã, estava estudando e não consegui resolver esa questão.
\lim_{v->1}\frac{{v}^{4}-1}{{v}^{3}-1}
Sei que o fator em comum q poderá ser simplificado é (v-1) porque ao substituirmos se der zero no numerador e no denomidor o fator que será eliminado é aquele a que o x tende com o sinal modificado, mas não consigo chegar na simplificação.
Pelo livro, a resposta é 4/3, mas não consegui chegar nela.
Por favor me ajudem!!!
-
Josi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Set 10, 2009 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Molina » Qui Set 10, 2009 17:49
Boa tarde, Josi.

Uma forma fácil e rápida de calcular este limite é usando L'Hopital.
Só que para usar isso você já tem que ter estudado Derivadas, o que normalmente nos cursos vem depois de Limites.
Você já estudou Derivadas? Há tópicos no próprio fórum explicando mais sobre o assunto:
search.php?st=0&sk=t&sd=d&keywords=l+hopital 
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Josi » Qui Set 10, 2009 18:07
Não. Por enquanto tô só no limite mesmo.
A professora até falou q os repetentes q sabem não podem usar essa regra por que ela irá desconsiderar a questão.
-
Josi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Set 10, 2009 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Molina » Qui Set 10, 2009 18:34
Ok, Josi.
Então vamos lá:
Podemos escrever

e

Desta forma:


Bom estudo e boa prova!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Josi » Qui Set 10, 2009 18:40
Muito Obrigada.
Estava fatorando errado. Agora entendi.
Valeu!!!
-
Josi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Set 10, 2009 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4751 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- preciso de ajuda urgente!!!!
por matematicada » Qua Nov 24, 2010 12:17
- 2 Respostas
- 2068 Exibições
- Última mensagem por matematicada

Qui Nov 25, 2010 11:39
Funções
-
- preciso de ajuda, é urgente
por nayane » Sex Nov 26, 2010 21:12
- 2 Respostas
- 2022 Exibições
- Última mensagem por nayane

Sáb Nov 27, 2010 14:40
Álgebra Elementar
-
- preciso de ajuda urgente por favor
por weverton » Qua Jun 23, 2010 17:56
- 0 Respostas
- 1493 Exibições
- Última mensagem por weverton

Qua Jun 23, 2010 17:56
Matemática Financeira
-
- [Módulo] Preciso de ajuda urgente!
por natalie_ » Seg Nov 28, 2011 01:12
- 0 Respostas
- 957 Exibições
- Última mensagem por natalie_

Seg Nov 28, 2011 01:12
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.