• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla]

[Integral Dupla]

Mensagempor gedersoncruz » Sáb Out 20, 2012 19:07

Calcule utilizando integrais duplas:

A área da região do plano xOy limitado pelas curvas {x}^{2}+{y}^{2}=16 e {y}^{2}=6x.

Rta: \frac{16\sqrt[2]{3}}{3}+4

Tentei fazer e obtive os seguintes limites de integração porém não chego neste resultado. Utilizei os seguintes limites:

\int_{0}^{2\sqrt[2]{3}}\int_{\frac{{y}^{2}}{3}}^{4-y}.dx.dy

Desde já agradecido.
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla]

Mensagempor young_jedi » Sáb Out 20, 2012 21:32

eu acho que a integral fica assim


\int_{-2\sqrt{3}}^{2\sqrt{3}}\int_{\frac{y^2}{6}}^{\sqrt{4^2-y^2}}dx.dy


se entendi bem é isso, qualquer coisa pergunte
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla]

Mensagempor gedersoncruz » Dom Out 21, 2012 00:14

young_jedi eu tentei resolve esta integral mas não consegui obter o resultado certo, teria como você mostrar a solução?
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla]

Mensagempor young_jedi » Dom Out 21, 2012 01:10

primeiro integrando em x ficaria

\int_{-2\sqrt{3}}^{2\sqrt{3}}\sqrt{4^2-y^2}dy-\int_{-2\sqrt{3}}^{2\sqrt{3}}\frac{y^2}{6}dy

a segunda integral fica

\left(\frac{y^3}{18}\right)_{y=-2\sqrt{3}}^{2\sqrt{3}}=\frac{24\sqrt{3}}{18}+\frac{24\sqrt{3}}{18}=\frac{8\sqrt{3}}{3}

para a primeira integral faremos uma substituinção trigonometrica

y=4sen\theta

dy=4cos\theta

para y=2\sqrt{3} temos \theta=\frac{\pi}{3} e
para y=-2\sqrt{3} temos \theta=\frac{-\pi}{3}

então a integral fica

\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\sqrt{4^2-4^2sen^2\theta}.4cos\theta.d\theta

\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}4^2cos^2\theta.d\theta

4^2\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\frac{1+cos2\theta}{2}.d\theta

\left(16.\frac{\theta}{2}+16.\frac{sen2\theta}{4}\right)_{-\frac{\pi}{3}}^{\frac{\pi}{3}}=

\frac{16.\pi}{3}+4\sqrt{3}

subtraindo o resultado das duas integrais

\frac{16.\pi}{3}+4\sqrt{3}-\frac{8\sqrt{3}}{3}=\frac{16.\pi}{3}+\frac{4\sqrt{3}}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla]

Mensagempor gedersoncruz » Dom Out 21, 2012 11:30

Qual identidade trigonométrica você utilizou para obter esta expressão 4^2 \int_{\frac{\pi}{3}}^{\frac{-\pi}{3}}\frac{1+cos^2}{2}.d\theta ?
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla]

Mensagempor young_jedi » Dom Out 21, 2012 11:38

cos(\theta+\theta)=cos\theta.cos\theta-sen\theta.sen\theta

cos2\theta=cos^2\theta-sen^2\theta

mais temos

1=cos^2\theta+sen^2\theta

somando as expressões

1+cos2\theta=2cos^2\theta

cos^2\theta=\frac{1+cos2\theta}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla]

Mensagempor gedersoncruz » Dom Out 21, 2012 11:45

Nossa! Muito obrigado. Já vou dar uma revisada na trigonometria. Valeu mesmo.
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59