• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla]

[Integral Dupla]

Mensagempor gedersoncruz » Sáb Out 20, 2012 19:07

Calcule utilizando integrais duplas:

A área da região do plano xOy limitado pelas curvas {x}^{2}+{y}^{2}=16 e {y}^{2}=6x.

Rta: \frac{16\sqrt[2]{3}}{3}+4

Tentei fazer e obtive os seguintes limites de integração porém não chego neste resultado. Utilizei os seguintes limites:

\int_{0}^{2\sqrt[2]{3}}\int_{\frac{{y}^{2}}{3}}^{4-y}.dx.dy

Desde já agradecido.
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla]

Mensagempor young_jedi » Sáb Out 20, 2012 21:32

eu acho que a integral fica assim


\int_{-2\sqrt{3}}^{2\sqrt{3}}\int_{\frac{y^2}{6}}^{\sqrt{4^2-y^2}}dx.dy


se entendi bem é isso, qualquer coisa pergunte
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla]

Mensagempor gedersoncruz » Dom Out 21, 2012 00:14

young_jedi eu tentei resolve esta integral mas não consegui obter o resultado certo, teria como você mostrar a solução?
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla]

Mensagempor young_jedi » Dom Out 21, 2012 01:10

primeiro integrando em x ficaria

\int_{-2\sqrt{3}}^{2\sqrt{3}}\sqrt{4^2-y^2}dy-\int_{-2\sqrt{3}}^{2\sqrt{3}}\frac{y^2}{6}dy

a segunda integral fica

\left(\frac{y^3}{18}\right)_{y=-2\sqrt{3}}^{2\sqrt{3}}=\frac{24\sqrt{3}}{18}+\frac{24\sqrt{3}}{18}=\frac{8\sqrt{3}}{3}

para a primeira integral faremos uma substituinção trigonometrica

y=4sen\theta

dy=4cos\theta

para y=2\sqrt{3} temos \theta=\frac{\pi}{3} e
para y=-2\sqrt{3} temos \theta=\frac{-\pi}{3}

então a integral fica

\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\sqrt{4^2-4^2sen^2\theta}.4cos\theta.d\theta

\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}4^2cos^2\theta.d\theta

4^2\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\frac{1+cos2\theta}{2}.d\theta

\left(16.\frac{\theta}{2}+16.\frac{sen2\theta}{4}\right)_{-\frac{\pi}{3}}^{\frac{\pi}{3}}=

\frac{16.\pi}{3}+4\sqrt{3}

subtraindo o resultado das duas integrais

\frac{16.\pi}{3}+4\sqrt{3}-\frac{8\sqrt{3}}{3}=\frac{16.\pi}{3}+\frac{4\sqrt{3}}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla]

Mensagempor gedersoncruz » Dom Out 21, 2012 11:30

Qual identidade trigonométrica você utilizou para obter esta expressão 4^2 \int_{\frac{\pi}{3}}^{\frac{-\pi}{3}}\frac{1+cos^2}{2}.d\theta ?
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla]

Mensagempor young_jedi » Dom Out 21, 2012 11:38

cos(\theta+\theta)=cos\theta.cos\theta-sen\theta.sen\theta

cos2\theta=cos^2\theta-sen^2\theta

mais temos

1=cos^2\theta+sen^2\theta

somando as expressões

1+cos2\theta=2cos^2\theta

cos^2\theta=\frac{1+cos2\theta}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla]

Mensagempor gedersoncruz » Dom Out 21, 2012 11:45

Nossa! Muito obrigado. Já vou dar uma revisada na trigonometria. Valeu mesmo.
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?