![\lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x} \lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x}](/latexrender/pictures/19ad56d9ea5a963747bfcb1400c2e50f.png)
eu fiz assim num sei si ta certo
![\lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x} .\frac{\sqrt[]{1+x}+\sqrt[]{1-x}}{\sqrt[]{1+x}+\sqrt[]{1-x}}\Rightarrow \frac{1+x-1-x}{x\left(\sqrt[]{1+x}+\sqrt[]{1-x} \right)}\Rightarrow\frac{1-1-x}{\sqrt[]{1+x}+\sqrt[]{1-x}} \lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x} .\frac{\sqrt[]{1+x}+\sqrt[]{1-x}}{\sqrt[]{1+x}+\sqrt[]{1-x}}\Rightarrow \frac{1+x-1-x}{x\left(\sqrt[]{1+x}+\sqrt[]{1-x} \right)}\Rightarrow\frac{1-1-x}{\sqrt[]{1+x}+\sqrt[]{1-x}}](/latexrender/pictures/37ae33f376aa5d6f8c7e3cdc7fe66de0.png)
mayconf escreveu:Galera num to conseguindo chegar no resultado certo desse limite
eu fiz assim num sei si ta certo
mayconf escreveu:eu corto um "x" de cima com um de baixo certo? ai em cima fica 1-1+x, que ficaria x?
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes