• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com Raiz

Limite com Raiz

Mensagempor mayconf » Sex Set 28, 2012 14:54

Galera num to conseguindo chegar no resultado certo desse limite
\lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x}

eu fiz assim num sei si ta certo
\lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x} .\frac{\sqrt[]{1+x}+\sqrt[]{1-x}}{\sqrt[]{1+x}+\sqrt[]{1-x}}\Rightarrow \frac{1+x-1-x}{x\left(\sqrt[]{1+x}+\sqrt[]{1-x} \right)}\Rightarrow\frac{1-1-x}{\sqrt[]{1+x}+\sqrt[]{1-x}}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limite com Raiz

Mensagempor LuizAquino » Sex Set 28, 2012 16:18

mayconf escreveu:Galera num to conseguindo chegar no resultado certo desse limite
\lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x}

eu fiz assim num sei si ta certo
\lim_{x=0}\frac{\sqrt[]{1+x}-\sqrt[]{1-x}}{x} .\frac{\sqrt[]{1+x}+\sqrt[]{1-x}}{\sqrt[]{1+x}+\sqrt[]{1-x}}\Rightarrow \frac{1+x-1-x}{x\left(\sqrt[]{1+x}+\sqrt[]{1-x} \right)}\Rightarrow\frac{1-1-x}{\sqrt[]{1+x}+\sqrt[]{1-x}}


Note que:

\lim_{x\to 0} \frac{\left(\sqrt{1+x} - \sqrt{1-x}\right)\left(\sqrt{1+x}+\sqrt{1-x}\right)}{x\left(\sqrt{1+x}+\sqrt{1-x}\right)} = \lim_{x\to 0} \frac{1+x - (1-x)}{x\left(\sqrt{1+x}+\sqrt{1-x}\right)}

= \lim_{x\to 0} \frac{1 + x - 1 + x}{x\left(\sqrt{1+x}+\sqrt{1-x}\right)}

Agora continue a partir daí.

Observação

Procure usar a notação de modo adequado. Na notação de limite não escrevemos x = 0, mas sim x\to 0. Além disso, enquanto você está resolvendo esse limite, você deve escrever a notação \lim_{x\to 0} em todos os passos, exceto no último quando você já calcula o valor do limite.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite com Raiz

Mensagempor mayconf » Sex Set 28, 2012 18:19

eu corto um "x" de cima com um de baixo certo? ai em cima fica 1-1+x, que ficaria x?
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limite com Raiz

Mensagempor LuizAquino » Sex Set 28, 2012 18:33

mayconf escreveu:eu corto um "x" de cima com um de baixo certo? ai em cima fica 1-1+x, que ficaria x?


Errado! Você não pode "cortar" o termo x da forma como você quer, pois há uma sequência de somas e subtrações no numerador. Primeiro você precisa resolver essas operações para depois efetuar as devidas simplificações (evite usar o termo "cortar").

Temos então o seguinte:

\lim_{x\to 0} \frac{1 + x - 1 + x}{x\left(\sqrt{1+x}+\sqrt{1-x}\right)} = \lim_{x\to 0} \frac{2x}{x\left(\sqrt{1+x}+\sqrt{1-x}\right)}

= \lim_{x\to 0} \frac{2}{\sqrt{1+x}+\sqrt{1-x}}

= \frac{2}{\sqrt{1+0}+\sqrt{1-0}} = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite com Raiz

Mensagempor mayconf » Sáb Set 29, 2012 16:31

Valeu ae LuizAquino, brigadão mesmo me salvou
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limite com Raiz

Mensagempor gabriel feron » Dom Set 30, 2012 20:07

Estou fazendo a mesma questão, o que tive dificuldade nela, foi na parte de cima, que por erro meu acabou dando 1+x-1-x, por erro de matemática simples, por isso não fechava, mas agora consegui! valeuu mesmo!
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59