por renan_a » Qua Set 26, 2012 19:59
Sejam r e s retas reversas passando or A e B e por C e D, respectivamente. Obtenha uma equação vetorial para a reta l concorrente com r e s e que é paralela ao vetor v(1,-5,-1) onde A(0,1,0) , B(1,1,0) , C (-3,1,-4) e D(-1,2, -7)
Da reta r, o vetor diretor seria o AB=(1,0,0)
Da reta s, o vetor diretor seria o CD=(2,1,-3)
r: (0,1,0) + t(1,0,0)
s: (-3,1,-4) +s(2,1,-3)
Eu teria que achar um ponto de interseção entre r e l , e entre s e l para daí eu fazer um vetor (ex.: ponto M e N , fazer o vetor MN) e formar a equação??
Alguém tem ideia de como se faz? Não consigo achar um ponto em comum entre essas retas...
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Qua Set 26, 2012 20:19
exatamente
pegando um ponto M(t,1,0) pertencente a reta r e um ponto N(2s-3,s+1,-3s-4)
o vetor

tem que ser igual ao vetor diretor da reta l multiplicado por um valor, ou seja

com isso voce tem um sistema de tres equação e tres incognitas resolvendo voce encontra os valor de s, r, l, e os pontos M e N e com isso a equação da reta l
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Qua Set 26, 2012 23:23
As 3 equações que tu diz, seriam: l= t-2s+3 , l= -s/-5 , l =3s + 4/-1 ??
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Qui Set 27, 2012 11:24
exatamente, essas tres equações
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Qui Set 27, 2012 11:35
Consegui chegar numa matriz 3x3 com 3 incógnitas como tu havia dito.
Ficou:
2y - t -1

=1
y + 0 +5

=-1
-3y + 0 +1

=7
acho que devo resover pelo método de cramer, correto?
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Qui Set 27, 2012 12:06
a dica que eu dou é manter as variaveis originais então o sistema ficaria

o metodo voce escolhe o que vc achar melhor, pode ser cramer se voce esta mais familiarizado
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Sex Set 28, 2012 00:30
Eu tava lendo um pouco sobre definição de retas coplanares e não-coplanares, e surgiu uma dúvida quanto ao enunciado estar realmente correto. Pode retas que são reversas(em planos diferentes) terem uma reta concorrente a elas duas? Pois retas concorrentes nao têm que estar num mesmo plano? A não ser que no enunciado ele queira dizer que a reta l é uma reta que intercepta as outras duas retas. Espero que tenham me entendido
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Sex Set 28, 2012 13:04
pode sim amigo. Se duas retas r e s por exemplo são reversas, mais existe uma reta t que intercepta as duas, existe um plano que contem r e t, e existe um outro plano que contem s e t, é exatamente isso que ele quer no exercicio, uma reta que intercepta as outras duas.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Dom Set 30, 2012 12:13
Partindo da ideia que tenho duas retas r e s reversas, uma reta l que é concorrente à elas, tem que ter um ponto de interseção entre r e l, e s e l.
Supondo que um ponto M é o ponto de interseção entre r e l
e um ponto N é o ponto de interseção entre s e l
r:(x,y,z) = (0,1,0) + t(1,0,0)
s:(x,y,z) = (-3,1,-4) +h(2,1,-3)
Beleza...
Posso dizer que meu ponto M(t,1,0) e meu ponto N( -3 +2h, 1+h , -4-3h)
logo, o vetor MN será (-3 +2h -t, h , -4-3h)
Mas sei que o vetor MN é paralelo a V(1,-5,-1)
Então (-3 +2h -t, h , -4-3h) =

(1,-5,-1)
-3 + 2h - t =

0 + h +0 =-5

-4 - 3h +0= -1

Abaixo, está uma foto com o cálculo por cramer.
Só queria confirmar se está certo a regra de cramer.
Tendo o valor de t, lambda e h, é só substituir em um dos pontos e no vetor MN
l: (x,y,z) = (-23/4,1,0) + t( 1/4, -5/4 , -1/4)
É isso? Tem algum erro?
Abraços
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Dom Set 30, 2012 12:51
amigo, perfeito seu raciocinio esta correto, é isso ai mesmo.
Abraço
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Seg Out 01, 2012 20:16
Obrigado pela tua ajuda, amigo. Graças a você consegui entender o exercício. Abraço
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [RETAS] equação vetorial de reta que corta outras duas
por renan_a » Seg Out 01, 2012 19:32
- 3 Respostas
- 1893 Exibições
- Última mensagem por young_jedi

Seg Out 01, 2012 22:04
Geometria Analítica
-
- Equacao vetorial
por izabela_diniz » Dom Jun 17, 2012 12:03
- 2 Respostas
- 1503 Exibições
- Última mensagem por izabela_diniz

Dom Jun 17, 2012 15:17
Geometria Analítica
-
- [Trigonometria] 11º Equação vetorial
por rola09 » Dom Mar 18, 2012 20:07
- 2 Respostas
- 1344 Exibições
- Última mensagem por rola09

Seg Mar 19, 2012 09:58
Geometria Analítica
-
- Equação vetorial da reta
por Danilo » Qua Out 31, 2012 02:36
- 3 Respostas
- 2167 Exibições
- Última mensagem por MarceloFantini

Sex Nov 02, 2012 08:23
Geometria Analítica
-
- Equação vetorial da reta/plano
por Danilo » Dom Nov 04, 2012 13:23
- 2 Respostas
- 4742 Exibições
- Última mensagem por Danilo

Dom Nov 04, 2012 16:51
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.