• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Quociente

[Derivada] Quociente

Mensagempor Paraujo » Dom Set 23, 2012 21:15

Boa noite Pessoal,

Estou relembrando alguns conceitos de derivada e precisava desenvolver a derivada abaixo para um experimento físico:

\frac{\partial q}{\partial\theta} = \sqrt[]{\frac{{(sen \theta)}^{3}}{cos \theta}}

Obrigado pela ajuda!
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: [Derivada] Quociente

Mensagempor young_jedi » Dom Set 23, 2012 21:25

você quer encontrar a função q(\theta) apartir da equação?
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivada] Quociente

Mensagempor Russman » Dom Set 23, 2012 21:46

Isto é uma equação diferencial parcial do tipo

\frac{\partial q }{\partial \theta } = f(\theta )

cuja solução é

q(\theta ,x_1,x_2,...,x_n) = \int_{\theta _1}^{\theta _2}f(\theta )d\theta  + g(x_1,x_2,...,x_n)

onde x_i é uma possível variável de dependência de q.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Derivada] Quociente

Mensagempor Paraujo » Dom Set 23, 2012 21:49

Na verdade essa é uma derivada parcial de um cálculo de propagação de erro, a minha dúvida está no desenvolvimento dela, não me recordo como resolver um derivada desse tipo.

Obrigado!
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: [Derivada] Quociente

Mensagempor Russman » Dom Set 23, 2012 22:28

Você qer derivar a função

\sqrt{\frac{(sin(\theta ))^3}{cos(\theta )}}

, é isso?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Derivada] Quociente

Mensagempor Paraujo » Dom Set 23, 2012 23:31

Isso mesmo... Não me recordo a tratativa em casos onde temos funções dentro de uma raiz e etc...
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: [Derivada] Quociente

Mensagempor Russman » Seg Set 24, 2012 01:16

Basta aplicar as regras da Cadeia e do Quociente.

\frac{\mathrm{d} }{\mathrm{d} \theta }\sqrt{\frac{(sin(\theta )^3)}{cos(\theta )}} = \frac{\mathrm{d} }{\mathrm{d} \theta }\frac{\sqrt{sin(\theta )^3}}{\sqrt{cos(\theta )}}=\frac{\sqrt{cos(\theta )}\frac{\mathrm{d} }{\mathrm{d} \theta }\sqrt{sin(\theta )^3}-\sqrt{sin(\theta )^3}\frac{\mathrm{d} }{\mathrm{d} \theta }\sqrt{cos(\theta )}}{\left | cos(\theta ) \right |}

Agora, para funções do tipo

f(x) = \sqrt{u(x)}

temos

\frac{\mathrm{d} f}{\mathrm{d} x}=\frac{\mathrm{d} f}{\mathrm{d} u}\frac{\mathrm{d}u }{\mathrm{d} x} = \frac{1}{2\sqrt{u}}.\left (\frac{\mathrm{d}u }{\mathrm{d} x}  \right )

Basta calcular as derivadas das funções raízes que aparecem e substituir na fórmula.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Derivada] Quociente

Mensagempor Paraujo » Ter Set 25, 2012 11:12

Obrigado Russman!!

Estou meio confuso no meu resultado, a fórmula é uma multiplicação de uma constante (positiva) pelo rsultado dessa derivada, cheguei num resultado negativo, e é nesse ponto que achei estranho, nesse contexto minha variação seria negativa... Você pode conferir essa derivada abaixo por favor?

\frac{\partial}{\partial\theta} \frac{{(sen\theta)}^{3}}{cos\theta} = \frac{-{(sen\theta)}^{4}-3{(sen\theta)}^{2}{(cos\theta)}^{2}}{{cos\theta}^{2}}

Abraço

Paulo
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: [Derivada] Quociente

Mensagempor young_jedi » Ter Set 25, 2012 11:49

pela regra da derivada do quociente

\frac{d}{dx}\left(\frac{f}{g}\right)&=&\frac{f'.g-fg'}{g^2}

no entanto voce inverteu a ordem
por isso sua derivada deu com o sinal invertido
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivada] Quociente

Mensagempor Paraujo » Ter Set 25, 2012 12:15

Perfeito Jedi! Obrigado!!
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D