por simoneribeiro » Qui Set 20, 2012 23:06
Num quadrilatero os lados possuem5;6;10;12 ponto contando com os pontos dos vertice.Escolhendo-se tres desses pontos, qual a probabilidade de quem esses pontos:
a)formem um triangulo
b)formem um lado desse quadrilatero
nao sei nem por onde começar a desenvolver esse exercicio..
e preciso entregar como trabalho da faculdade..
-
simoneribeiro
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Set 20, 2012 16:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por young_jedi » Sex Set 21, 2012 13:32
primeiro vc tem que ver quantos pontos tem no total
como cada lado tem dois pontos que estão sobre os vertices então vamos separar os vertices dos demais




sendo que a soma toltal de pontos é dado pela soma dos pontos que estão sobre os lados e os quatro pontos sobre os vetices

agora tem que calcular o numero de combições de tres elementos que se forma com 29 elementos

agora temos que para que tres pontos formem um triangula eles nao podem estar sobre um mesmo lado
então tem que se clacular o numero de combinação de 3 pontos em cada lado




somando este quatro valores vc tera o total de combinações que não formam triangulos
subtraindo do total de combinações voce tera o numero que combinação que formam triangulos, dividindo pelo total voce tera probabilidade
B) para que ele seja diagonal pelo menos dois pontos tem que estar nos vertices opostos
que são duas combinações possiveis então

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- dúvida em resolver o exercício
por angeloka » Ter Out 05, 2010 18:31
- 4 Respostas
- 3732 Exibições
- Última mensagem por LuizAquino

Ter Mar 29, 2011 11:55
Sequências
-
- Ajuda pra resolver exercicio
por Brunna013 » Ter Jun 03, 2008 11:22
- 4 Respostas
- 41936 Exibições
- Última mensagem por Molina

Seg Mai 03, 2010 14:33
Trigonometria
-
- Dificuldade em resolver o exercicio nº 2
por Catriane Moreira » Sáb Nov 20, 2010 23:01
- 1 Respostas
- 2000 Exibições
- Última mensagem por alexandre32100

Seg Nov 22, 2010 14:42
Matemática Financeira
-
- [frações] Ajuda pra resolver exercicio
por ERICK12 » Seg Jun 09, 2008 02:41
- 1 Respostas
- 10282 Exibições
- Última mensagem por admin

Seg Jun 09, 2008 15:51
Álgebra Elementar
-
- Exercício de conectivos lógicos - não sei resolver
por pkutwak » Ter Fev 23, 2010 23:49
- 0 Respostas
- 3442 Exibições
- Última mensagem por pkutwak

Ter Fev 23, 2010 23:49
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.