por Ronaldobb » Ter Set 18, 2012 19:56
1) No gráfico abaixo está representada a função lucro y = P(x), obtido com a produção de x unidades de um produto.
a) O ponto (2500, 52500) é o ponto mais alto do gráfico. O que isto quer dizer em termos de lucro versus quantidade?
b) O ponto (1500, 42500) pertence ao gráfico da função. Faça uma afirmação que expresse o significado deste ponto.
c) Expresse com palavras as questões matemáticas: "resolva P(x) = 30000" , "encontre P(200)"
Aqui está o gráfico:
http://i.imgur.com/vluET.png
-
Ronaldobb
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Ter Set 18, 2012 19:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por young_jedi » Ter Set 18, 2012 21:10
a) amigo sendo (2500,52500) o ponto maximo da função L(x) (vertice da parabola) , então este é o ponto de maximo lucro representado por essa função.
c) atraves da formula do vertice da parabola

então


ou seja a função sera dada por


substituindo pelos pontos do grafico que voce tem


é so resolver o sistema e encontrar os valores de a e c e obter a função lucro e substituir os pontos desejados
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Ter Set 18, 2012 21:12
a) Obtem-se o lucro máximo, equivalente a 52500 com a venda de 2500 unidades.
b) Idem a), só qe este não é o máximo possível.
c) P(x) = 30000 é uma equação que busca para qual quantidade vendida x que se obtem o lucro de 30000.
P(200) é o lucro da venda de 200 unidades.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda aqui com essa questão de função
por Ronaldobb » Qui Set 20, 2012 19:41
- 7 Respostas
- 3071 Exibições
- Última mensagem por Ronaldobb

Qui Set 20, 2012 22:34
Funções
-
- Ajuda aqui!
por Liahtz » Sex Ago 07, 2015 17:38
- 1 Respostas
- 10160 Exibições
- Última mensagem por nakagumahissao

Sáb Ago 08, 2015 11:33
Matrizes e Determinantes
-
- ajuda aqui!
por zenildo » Seg Mai 09, 2016 01:18
- 5 Respostas
- 9571 Exibições
- Última mensagem por zenildo

Qui Mai 12, 2016 22:41
Trigonometria
-
- ajuda aqui por favor
por zenildo » Qui Mai 12, 2016 23:55
- 0 Respostas
- 2550 Exibições
- Última mensagem por zenildo

Qui Mai 12, 2016 23:55
Trigonometria
-
- Por Deus, ajuda aqui!
por zenildo » Ter Mai 31, 2016 09:50
- 4 Respostas
- 2982 Exibições
- Última mensagem por DanielFerreira

Sáb Jun 04, 2016 23:37
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.