• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor iceman » Ter Set 18, 2012 19:32

Lim \frac{\sqrt{x}{-3}}{x^2-9x}
x\rightarrow9

Ajuda ? vlw!
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 19:47

Eu tinha feito uma pergunta, mas vou resolver do jeito que está aí:

\frac{\sqrt{x} - 3}{x^2 - 9x}

Repare que podemos manipular o denominador da seguinte forma:

x^2 - 9x = (\sqrt{x} - 3) \cdot (x^{\frac{3}{2}} + 3x)

Aplicando na fração:

\frac{(\sqrt{x}  - 3)}{(\sqrt{x}  -3) \cdot (x^{\frac{3}{2}} + 3x)} \Rightarrow \frac{1}{(x^{\frac{3}{2}} + 3x) }

Substituindo no limite temos:

\lim_{x \rightarrow 9} \frac{1}{(x^{\frac{3}{2}} + 3x) } = \frac{1}{54}

[ ]'s
Renato.
Editado pela última vez por Renato_RJ em Ter Set 18, 2012 19:54, em um total de 3 vezes.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 19:51

Renato_RJ escreveu:Tira uma dúvida, é \sqrt{x} - 3 ou \sqrt{x-3} e no denominador é realmente x^2 - 9x ???

Grato,
Renato.


É \sqrt{x} - 3
Sim é x^2 - 9x


Valeu.
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 19:54

iceman escreveu:
É \sqrt{x} - 3
Sim é x^2 - 9x


Valeu.


Te respondi acima...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 20:10

Renato_RJ escreveu:Eu tinha feito uma pergunta, mas vou resolver do jeito que está aí:

\frac{\sqrt{x} - 3}{x^2 - 9x}

Repare que podemos manipular o denominador da seguinte forma:

x^2 - 9x = (\sqrt{x} - 3) \cdot (x^{\frac{3}{2}} + 3x)

Aplicando na fração:

\frac{(\sqrt{x}  - 3)}{(\sqrt{x}  -3) \cdot (x^{\frac{3}{2}} + 3x)} \Rightarrow \frac{1}{(x^{\frac{3}{2}} + 3x) }

Substituindo no limite temos:

\lim_{x \rightarrow 9} \frac{1}{(x^{\frac{3}{2}} + 3x) } = \frac{1}{54}

[ ]'s
Renato.



Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 20:22

iceman escreveu:
Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?


O termo x^{\frac{3}{2}} é para termos um x^4 dentro da raiz e, quando resolvêssemos teríamos x^2.

Pois x^{\frac{3}{2}} = \sqrt{x^3}

Bem, se tem outra forma eu desconheço (seria bem legal se alguém publicasse outra forma de resolver essa questão)...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 20:33

Renato_RJ escreveu:
iceman escreveu:
Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?


O termo x^{\frac{3}{2}} é para termos um x^4 dentro da raiz e, quando resolvêssemos teríamos x^2.

Pois x^{\frac{3}{2}} = \sqrt{x^3}

Bem, se tem outra forma eu desconheço (seria bem legal se alguém publicasse outra forma de resolver essa questão)...



Achei outra forma mas confesso que não entendi :X

\frac{\sqrt{x}-3*\sqrt{x+3}}{x(x-9)*\sqrt{x+3}}

\frac{\sqrt{x}^2-9}{x(x-9)*\sqrt{x+3}}

\frac{x-9}{x(x-9)*\sqrt{x+3}}

\frac{1}{x(\sqrt{x}+3)}

\frac{1}{9(\sqrt{9}+3)}

\frac{1}{9*6}

\frac{1}{54}
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 20:53

Essa solução que você achou é bem mais simples que a minha.... Gostei !!!

O que o autor fez foi 1 = \frac{\sqrt{x} + 3}{\sqrt{x} + 3} e não faz diferença multiplicar uma fração por 1, pois não muda nada... Mas essa fração dá para operar com a raiz e obter o x - 9 no numerador e cancelar com o do denominador...

Bem prático....

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)