• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor iceman » Ter Set 18, 2012 19:32

Lim \frac{\sqrt{x}{-3}}{x^2-9x}
x\rightarrow9

Ajuda ? vlw!
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 19:47

Eu tinha feito uma pergunta, mas vou resolver do jeito que está aí:

\frac{\sqrt{x} - 3}{x^2 - 9x}

Repare que podemos manipular o denominador da seguinte forma:

x^2 - 9x = (\sqrt{x} - 3) \cdot (x^{\frac{3}{2}} + 3x)

Aplicando na fração:

\frac{(\sqrt{x}  - 3)}{(\sqrt{x}  -3) \cdot (x^{\frac{3}{2}} + 3x)} \Rightarrow \frac{1}{(x^{\frac{3}{2}} + 3x) }

Substituindo no limite temos:

\lim_{x \rightarrow 9} \frac{1}{(x^{\frac{3}{2}} + 3x) } = \frac{1}{54}

[ ]'s
Renato.
Editado pela última vez por Renato_RJ em Ter Set 18, 2012 19:54, em um total de 3 vezes.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 19:51

Renato_RJ escreveu:Tira uma dúvida, é \sqrt{x} - 3 ou \sqrt{x-3} e no denominador é realmente x^2 - 9x ???

Grato,
Renato.


É \sqrt{x} - 3
Sim é x^2 - 9x


Valeu.
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 19:54

iceman escreveu:
É \sqrt{x} - 3
Sim é x^2 - 9x


Valeu.


Te respondi acima...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 20:10

Renato_RJ escreveu:Eu tinha feito uma pergunta, mas vou resolver do jeito que está aí:

\frac{\sqrt{x} - 3}{x^2 - 9x}

Repare que podemos manipular o denominador da seguinte forma:

x^2 - 9x = (\sqrt{x} - 3) \cdot (x^{\frac{3}{2}} + 3x)

Aplicando na fração:

\frac{(\sqrt{x}  - 3)}{(\sqrt{x}  -3) \cdot (x^{\frac{3}{2}} + 3x)} \Rightarrow \frac{1}{(x^{\frac{3}{2}} + 3x) }

Substituindo no limite temos:

\lim_{x \rightarrow 9} \frac{1}{(x^{\frac{3}{2}} + 3x) } = \frac{1}{54}

[ ]'s
Renato.



Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 20:22

iceman escreveu:
Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?


O termo x^{\frac{3}{2}} é para termos um x^4 dentro da raiz e, quando resolvêssemos teríamos x^2.

Pois x^{\frac{3}{2}} = \sqrt{x^3}

Bem, se tem outra forma eu desconheço (seria bem legal se alguém publicasse outra forma de resolver essa questão)...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 20:33

Renato_RJ escreveu:
iceman escreveu:
Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?


O termo x^{\frac{3}{2}} é para termos um x^4 dentro da raiz e, quando resolvêssemos teríamos x^2.

Pois x^{\frac{3}{2}} = \sqrt{x^3}

Bem, se tem outra forma eu desconheço (seria bem legal se alguém publicasse outra forma de resolver essa questão)...



Achei outra forma mas confesso que não entendi :X

\frac{\sqrt{x}-3*\sqrt{x+3}}{x(x-9)*\sqrt{x+3}}

\frac{\sqrt{x}^2-9}{x(x-9)*\sqrt{x+3}}

\frac{x-9}{x(x-9)*\sqrt{x+3}}

\frac{1}{x(\sqrt{x}+3)}

\frac{1}{9(\sqrt{9}+3)}

\frac{1}{9*6}

\frac{1}{54}
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 20:53

Essa solução que você achou é bem mais simples que a minha.... Gostei !!!

O que o autor fez foi 1 = \frac{\sqrt{x} + 3}{\sqrt{x} + 3} e não faz diferença multiplicar uma fração por 1, pois não muda nada... Mas essa fração dá para operar com a raiz e obter o x - 9 no numerador e cancelar com o do denominador...

Bem prático....

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}