• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - Questão

Derivada - Questão

Mensagempor iceman » Ter Set 18, 2012 18:56

Resolva a derivada abaixo:

F(x)=\frac{6x}{x+1}



Ajuda, por favor? :-D
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Questão

Mensagempor Renato_RJ » Ter Set 18, 2012 19:10

Você quer calcular a derivada da função, é isso ?

Se sim, era só usar a regra da derivada para funções racionais (acho que você mesmo postou uma questão assim que estava certa)...

Vejamos:
f(x) = \frac{6x}{x+1} \Rightarrow \frac{6*(x+1) - 1*6x}{(x+1)^2}

Resolvendo:

f'(x) = \frac{6x + 6 - 6x}{(x+1)^2} \Rightarrow \frac{6}{(x+1)^2}

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Derivada - Questão

Mensagempor iceman » Ter Set 18, 2012 19:16

Renato_RJ escreveu:Você quer calcular a derivada da função, é isso ?

Se sim, era só usar a regra da derivada para funções racionais (acho que você mesmo postou uma questão assim que estava certa)...

Vejamos:
f(x) = \frac{6x}{x+1} \Rightarrow \frac{6*(x+1) - 1*6x}{(x+1)^2}

Resolvendo:

f'(x) = \frac{6x + 6 - 6x}{(x+1)^2} \Rightarrow \frac{6}{(x+1)^2}

Abraços,
Renato.


Amigo, você poderia me dizer em que casos eu uso essa regra ? Abs.
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Questão

Mensagempor Renato_RJ » Ter Set 18, 2012 19:24

Sempre que você tiver uma função racional, isto é, uma função com essa "cara":

f(x) = \frac{P(x)}{Q(x)}

Então poderá usar a regra da divisão:

f'(x) = \frac{P'(x) \cdot Q(x) - Q'(x) \cdot P(x)}{Q^2(x)}

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}