por Danilo » Dom Ago 26, 2012 19:59
Determine Z pertencente ao conjunto dos números complexos tal que

.
Uma das coisas que pensei foi fazer
![z = \sqrt[]{i} z = \sqrt[]{i}](/latexrender/pictures/2ed636678063b3f50530c8d961b2ca50.png)
mas não sei como aplicar a informação...
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Dom Ago 26, 2012 21:37
Danilo escreveu:Determine Z pertencente ao conjunto dos números complexos tal que

.
Uma das coisas que pensei foi fazer
![z = \sqrt[]{i} z = \sqrt[]{i}](/latexrender/pictures/2ed636678063b3f50530c8d961b2ca50.png)
mas não sei como aplicar a informação...
Eu recomendo que você estude o conteúdo "Radiciação de Números Complexos".
Considere um número complexo

. Se z é uma raiz n-ésima de u, isto é,

, então temos que:
![z = \sqrt[n]{|u|}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\,\textrm{sen}\,\left(\frac{\theta+2k\pi}{n}\right)\right] z = \sqrt[n]{|u|}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\,\textrm{sen}\,\left(\frac{\theta+2k\pi}{n}\right)\right]](/latexrender/pictures/635e910fd5fb7ad17249731c4f9d85a4.png)
, com k = 0, 1, 2, ..., n-1.
Agora tente aplicar essa fórmula.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Qua Ago 29, 2012 10:28
LuizAquino escreveu:Danilo escreveu:Determine Z pertencente ao conjunto dos números complexos tal que

.
Uma das coisas que pensei foi fazer
![z = \sqrt[]{i} z = \sqrt[]{i}](/latexrender/pictures/2ed636678063b3f50530c8d961b2ca50.png)
mas não sei como aplicar a informação...
Eu recomendo que você estude o conteúdo "Radiciação de Números Complexos".
Considere um número complexo

. Se z é uma raiz n-ésima de u, isto é,

, então temos que:
![z = \sqrt[n]{|u|}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\,\textrm{sen}\,\left(\frac{\theta+2k\pi}{n}\right)\right] z = \sqrt[n]{|u|}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\,\textrm{sen}\,\left(\frac{\theta+2k\pi}{n}\right)\right]](/latexrender/pictures/635e910fd5fb7ad17249731c4f9d85a4.png)
, com k = 0, 1, 2, ..., n-1.
Agora tente aplicar essa fórmula.
Beleza!

-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por vmo_apora » Sex Set 21, 2012 19:45
Será que está não seria uma solução interessante:
Seja

Pelo enunciado

Pela igualdade dos complexos:

deve ter o mesmo sinal onde
![a=b= \pm\frac{\sqrt[]{2}}{2} a=b= \pm\frac{\sqrt[]{2}}{2}](/latexrender/pictures/db6efe5c5d03971669b1cf87c67dcdd2.png)
.
Então podemos ter
![z=\frac{\sqrt[]{2}}{2}+\frac{\sqrt[]{2}}{2}i~~ou~~z=-\frac{\sqrt[]{2}}{2}-\frac{\sqrt[]{2}}{2}i z=\frac{\sqrt[]{2}}{2}+\frac{\sqrt[]{2}}{2}i~~ou~~z=-\frac{\sqrt[]{2}}{2}-\frac{\sqrt[]{2}}{2}i](/latexrender/pictures/94a7f3003ada7377a3a2695e3a3dc776.png)
-
vmo_apora
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Mai 13, 2011 16:49
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por MarceloFantini » Sex Set 21, 2012 23:53
Perfeitamente válida, mas pode ser muito trabalhosa para um caso genérico. Resolver esse sistema pode gerar uma dor de cabeça grande, enquanto que pela notação de Euler tudo é resolvido de modo simples.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Números complexos] Dúvida
por iceman » Qui Mai 10, 2012 18:52
- 5 Respostas
- 3508 Exibições
- Última mensagem por fraol

Qui Mai 10, 2012 21:15
Números Complexos
-
- Números Complexos - Dúvida
por iceman » Ter Mai 15, 2012 20:22
- 1 Respostas
- 1671 Exibições
- Última mensagem por fraol

Ter Mai 15, 2012 22:20
Números Complexos
-
- Dúvida - Números complexos
por Danilo » Sex Ago 03, 2012 02:05
- 5 Respostas
- 3581 Exibições
- Última mensagem por Danilo

Sex Ago 03, 2012 16:46
Números Complexos
-
- Dúvida - números complexos
por Danilo » Ter Ago 07, 2012 14:51
- 4 Respostas
- 2967 Exibições
- Última mensagem por LuizAquino

Qua Ago 08, 2012 11:38
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 15986 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.