por pvgomes07 » Sex Ago 10, 2012 12:52
Pessoal,
estou precisando achar a função de transferência de um modelo matemático, consegui desenvolver todo equacionamento, mas no final, no momento de achar a função de transferência (Saída/Entrada) do sistema, não consigo fazer a Transformada de Laplace.
Segue o sistema:
![\frac{d}{dt} [ m^3 . h(t)^3 + 3m^2.r1.h(t)^2 + 3m.r1.h(t) ] = Q(t) \frac{d}{dt} [ m^3 . h(t)^3 + 3m^2.r1.h(t)^2 + 3m.r1.h(t) ] = Q(t)](/latexrender/pictures/0d29c32fac04327ac7ea16fd15c5a06d.png)
Sendo

e

CONSTANTES.
e

a saída.

a entrada.
Ou seja, terei que achar a transformada de laplace

, mas não sei se posso, com essas potências no

. :/
Oque poderem me fazer, dicas ou qualquer coisa, já me ajuda bastante!
Obrigado pessoal!
-
pvgomes07
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Ago 05, 2012 17:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por pvgomes07 » Qui Ago 16, 2012 15:40
Obrigado Santiago, mas ainda não deu certo...
Essa resolução está um pouco além de uma transformada simples, dessas que costumamos resolver na faculdade.
Mas obrigado pela colaboração! Vou continuar tentando resolvê-la.
Quem puder também, me dar sugestões de como faço para linearizá-la também ficaria bastante agradecido. Utilizando a série de Taylor ou não...
-
pvgomes07
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Ago 05, 2012 17:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [TRANSFORMADA DE LAPLACE]
por liviabgomes » Qui Dez 01, 2011 15:19
- 1 Respostas
- 1215 Exibições
- Última mensagem por LuizAquino

Seg Dez 05, 2011 10:19
Cálculo: Limites, Derivadas e Integrais
-
- Transformada de Laplace
por Russman » Sex Mai 04, 2012 01:13
- 2 Respostas
- 1577 Exibições
- Última mensagem por pvgomes07

Sex Ago 10, 2012 13:11
Funções
-
- transformada de laplace
por theSinister » Seg Nov 05, 2012 16:01
- 2 Respostas
- 1241 Exibições
- Última mensagem por theSinister

Seg Nov 05, 2012 18:11
Cálculo: Limites, Derivadas e Integrais
-
- [Transformada de laplace] de funções
por jeferson_justo135 » Seg Jan 12, 2015 22:48
- 7 Respostas
- 3835 Exibições
- Última mensagem por jeferson_justo135

Dom Fev 08, 2015 16:53
Cálculo: Limites, Derivadas e Integrais
-
- coordenadas esfericas Laplace tridimensional
por rhuam » Sex Set 15, 2017 09:36
- 0 Respostas
- 1830 Exibições
- Última mensagem por rhuam

Sex Set 15, 2017 09:36
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.