• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Seg Jul 09, 2012 19:50

Determine a equação do plano definido pelo ponto P(2,1,3) e pela reta \begin{cases} 2x-y-z=2 \\ z=0 \end{cases}

Não sei como iniciar o exercício, gostaria de uma dica para iniciar.
Tenho que tirar vetor diretor da reta e aplicar nos pontos para achar equação do plano?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Seg Jul 16, 2012 03:55

Ainda não sei como resolver
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 03:00

Ainda não sei como resolver[2]
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Ter Jul 17, 2012 04:31

Eu começaria parametrizando a reta!

Depois disso, basta proceder como você faz quando tem uma reta parametrizada e um ponto.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 18:59

Como assim parametrizando? Poderia me dar o exemplo Rusman, pois eu tenho um ponto e tenho o vetor diretor da reta, para parametrizar não seria necessário ter dois pontos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Ter Jul 17, 2012 19:01

Uma parametrização possível é, de uma forma bem simples, tomar x=t. Assim, isole o y em função de x, isto é, t. A equação paramétrica do z você já tem, que é z=0.t = 0.

:y:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Sex Jul 20, 2012 03:29

Encontrei duas equações

y=2-2t e z=0

E depois?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Seg Jul 23, 2012 21:05

?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Seg Jul 23, 2012 23:34

Agora você tem um ponto e a reta

\left\{\begin{matrix}
x=t\\
y=2-2t\\ 
z=0\\ 

\end{matrix}\right.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor MarceloFantini » Ter Jul 24, 2012 03:49

Acho que você errou algumas contas:

2x-y=2 \implies 2x-2=y;
x=t \implies y = 2t-2 e não y=2-2t.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Qua Jul 25, 2012 16:13

Isso mesmo Marcelo Fantini. :y:

Tendo um ponto e uma reta paramétrica, como chegar na equação do plano cartesiana?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Qua Jul 25, 2012 17:09

?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor hygorvv » Qui Jul 26, 2012 14:50

Eu faria diferente. Minha contribuição:
2x-y-z=2
z=0

Logo, 2x-y=2

(x-1)=\frac{y}{2}
z=0 (Equações simétricas da reta)

Equação vetorial da reta :
X=(1,0,0) + \lambda(1,2,0)

Agora você tem dois pontos e um vetor paralelo ao plano.

Veja se te ajuda.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Plano

Mensagempor DanielFerreira » Qui Jul 26, 2012 20:16

E aí Hygorvv, blz?
seja bem-vindo!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Plano

Mensagempor hygorvv » Sex Jul 27, 2012 00:27

Valeu, danjr5! :)
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Plano

Mensagempor Claudin » Sex Jul 27, 2012 00:44

hygorvv escreveu:Eu faria diferente. Minha contribuição:
2x-y-z=2
z=0

Logo, 2x-y=2

(x-1)=\frac{y}{2}
z=0 (Equações simétricas da reta)

Equação vetorial da reta :
X=(1,0,0) + \lambda(1,2,0)

Agora você tem dois pontos e um vetor paralelo ao plano.

Veja se te ajuda.


O problema é que pede equação na forma cartesiana e não vetorial.

Mas obrigado pela ajuda, e obrigado a todos
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor hygorvv » Sex Jul 27, 2012 00:57

Sim, com dois pontos e um vetor paralelo você consegue a equação geral do plano.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Plano

Mensagempor Claudin » Sex Jul 27, 2012 01:03

Sim.

Mas como você encontrou o ponto (1,0,0) ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor hygorvv » Sex Jul 27, 2012 01:19

Olha as equações simétricas da reta. Sendo uma equação vetorial de uma reta sendo r: X=(xo, yo, 0)+\lambda(a,b,0), suas equações simétricas(ou reduzidas) serão: \frac{(x-xo)}{a}=\frac{(y-yo)}{b} e z=0

Tenta comparar agora.

Espero que te ajude.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Plano

Mensagempor LuizAquino » Sáb Jul 28, 2012 13:56

Claudin escreveu:Mas como você encontrou o ponto (1,0,0) ?


Sala de Bate Papo - 28 de julho de 2012
(10:55:48) Claudin: Luiz Aquino, poderia me ajudar no tópico plano, nao consegui enxergar o ponto 1,0,0


O procedimento é simples. Basta analisar as equações.

Sabemos que a reta é a interseção dos planos 2x - y - z = 2 e z = 0. Isso significa que todos os pontos dessa reta devem atender essas duas equações.

Analisando a segunda delas, note que sempre a coordenada z é igual a zero. Sendo assim, já sabemos que todos os pontos dessa reta possuem o formato P = (x, y, 0).

Substituindo então z = 0 na primeira equação, obtemos que y = 2x - 2. Ou seja, podemos dizer que todos os pontos da reta possuem o formato P = (x, 2x - 2, 0). Note que escolhendo um valor qualquer para x podemos encontrar o valor correspondente para a coordenada y.

Agora responda: que ponto é obtido quando escolhemos x = 1?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Plano

Mensagempor Claudin » Sáb Jul 28, 2012 14:12

Sim, iria encontrar (1,0,0)

Obrigado a todos pelas explicações.

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Sex Ago 31, 2012 21:14

Tendo como vetor (1,2,0) e como ponto P(2,1,3)

Para encontrar a equação do plano na forma cartesiana, acabei substituindo na equação

ax+by+cz+d=0

1(2)+2(1)+0(3)+d=0

d=-4

Porém a equação correta no gabarito não é essa.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor LuizAquino » Sex Ago 31, 2012 21:38

Claudin escreveu:Tendo como vetor (1,2,0) e como ponto P(2,1,3)

Para encontrar a equação do plano na forma cartesiana, acabei substituindo na equação

ax+by+cz+d=0

1(2)+2(1)+0(3)+d=0

d=-4

Porém a equação correta no gabarito não é essa.


Na equação do plano, os coeficientes a, b e c representam as coordenadas de um vetor normal ao plano. Acontece que \vec{d} = (1,\,2,\,0) não é um vetor normal ao plano!

Analise a figura abaixo. Você já conhece P = (2,1,3) e \vec{d} = (1,\,2,\,0) . Para determinar um vetor \vec{n} normal ao plano, basta calcular \vec{d}\times\overrightarrow{QP}, sendo Q um ponto qualquer da reta r. Tente continuar a partir daí.

figura.png
figura.png (3.09 KiB) Exibido 12961 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Plano

Mensagempor Claudin » Sáb Set 01, 2012 03:41

Obrigado pela explicação

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.