por MariPC » Sáb Ago 15, 2009 14:45
Olá gostaria de saber se posso afirmar que:
Se uma função é derivável, então ela é contínua.
Grata
-
MariPC
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 15, 2009 01:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Felipe Schucman » Sáb Ago 15, 2009 15:00
Penso que sim....
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por MariPC » Sáb Ago 15, 2009 15:11
Valeu!
-
MariPC
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 15, 2009 01:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Molina » Sáb Ago 15, 2009 15:54
MariPC escreveu:Olá gostaria de saber se posso afirmar que:
Se uma função é derivável, então ela é contínua.
Grata
Também acho que sim.
Pois, partindo do princípio que só podemos diferenciar funções contínuas essa sua afirmação é verídica.
Se isso de fato for verdade podemos escrever:
Uma função f é diferenciável se e somente se f for contínua. 
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por MariPC » Sáb Ago 15, 2009 16:00
Valeu!!! Estou com algumas dúvidas, faz tempo que não trabalhava com essas áreas da matemática!!!
-
MariPC
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 15, 2009 01:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por felipecontra3 » Sex Jun 03, 2011 14:50
Ih galera, acho que tem um erro aí...
Toda função diferenciável é contínua, mas nem toda função contínua é diferenciável em certo x0
Por exemplo: f(x) = |x|
Essa função é contínua, porém em x0 = 0 ela não tem derivada, pois há inúmeras retas que tangenciam esse ponto...
Ou seja, ser difernciável implica em ser contínua, mas ser contínua não implica em ser diferenciável...
-
felipecontra3
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Jun 03, 2011 14:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Si
- Andamento: cursando
por MarceloFantini » Sex Jun 03, 2011 16:02
Não apenas em um ponto específico, existem funções contínuas em todo seu domínio e não diferenciável em lugar algum. A afirmação certa é:
Se

é diferenciável, então ela é contínua.
A recíproca NÃO É verdadeira.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- A função é derivável
por Ana Maria da Silva » Qua Jun 12, 2013 20:51
- 1 Respostas
- 1112 Exibições
- Última mensagem por e8group

Sex Jun 14, 2013 20:41
Cálculo: Limites, Derivadas e Integrais
-
- Função derivável no ponto
por Lilica » Qua Jun 29, 2011 16:02
- 3 Respostas
- 3174 Exibições
- Última mensagem por LuizAquino

Qua Jun 29, 2011 17:04
Cálculo: Limites, Derivadas e Integrais
-
- Seja ?(x) uma função derivavel
por kak9 » Ter Out 02, 2018 15:33
- 0 Respostas
- 2850 Exibições
- Última mensagem por kak9

Ter Out 02, 2018 15:33
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida sobre função.
por ibatexano » Ter Out 06, 2009 19:00
- 5 Respostas
- 3078 Exibições
- Última mensagem por jwcosta

Dom Out 25, 2009 20:11
Funções
-
- duvida sobre função continua
por levyrc » Sex Abr 08, 2011 22:56
- 2 Respostas
- 2163 Exibições
- Última mensagem por LuizAquino

Dom Abr 10, 2011 13:24
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.